
Chapter 7
Adaptive Audio Processing

7.1 Introduction

Adaptive filters in audio scenarios have a wide range of applications that, in general,
can be reduced to only two main families:

• Direct acoustic modeling: room impulse response estimation, acoustic echo cancel-
lation, parameters determination of complex acoustic dynamical systems, methods
for computational analysis of the acoustic scene,

• Inverse acoustic modeling: equalization of transduction devices such as loudspeak-
ers and microphones, multipoint acoustic room correction, active noise cancella-
tion, systems calibration for 3D audio, crosstalk elimination,

In other words, from complex PA systems to low-cost noise-canceling headphones,
modern audio systems are almost always equipped with “intelligent” calibration sys-
tems. In this ever-changing environment, adaptive signal processing is increasingly
becoming an indispensable theoretical and applicative tool in modern DASP.

7.2 Adaptation with Stochastic and Approximate Stocastic
Optimization

Adaptive Filters (AFs) are defined as information processing systems capable of au-
tonomously adjusting their parameters in response to external stimuli. In other words,
the system learns independently and adapts its parameters to achieve a certain pro-
cessing goal such as extracting the useful information from an acquired signal and the
removal of disturbances due to noise or other sources interfering or, more generally,
the adaptive filter provides the elimination of the redundant information. A linear
transversal AF, illustrated in Fig. 7.1, is a simple FIR filter equipped with an adap-
tation or learning algorithm for determining its parameters according to a predefined
criterion that consists in minimizing a certain cost- or loss-function [1]-[11].

For a compact representation, it is possible to use a vector notation as in Eqn.
(4.3). We define the weight vector, containing the coefficients of the filter impulse

333

334 7 Adaptive Audio Processing

Fig. 7.1 A linear adaptive
FIR filter or simply adap-
tive filter (AF) composed
by convolver circuit, i.e. an
adaptive linear combiner
feeded by a delay-line, plus
a learning algorithm that
minimize a given cost func-
tion (CF) J(w). Note that
the desired signal d[n], is
a “target sequence” with
added Gaussian noise.

[]x n

[]x n

[1]x n M

[1]x n

Th x

Linear
Combiner

[]y n

Tapped Delay-Line
first-input-last-output
shift mechanism

Delay element

1z
[]x n [1]x n

[] Ty n h x

0h

1h

2h

[1]x n

[2]x n

[1]x n M
1Mh

[]x n

1z

1z

1z

Delay element

1z
[]x n [1]x n

[] [] []e n d n y n

[] Ty n w x

0w

1w

2w

[1]x n

[2]x n

[1]x n M
1Mw

[]d n

[]x n

Learning
algorithm
min ()J w

1z

1z

1z

2[] (0,)n

[]d n

Additive irreducible noise

Target signal

response at time n, as wn ∈ RM×1. The input signal is defined as xn ∈ RM×1 =
[x[n] x[n− 1] · · · x[n−M + 1]]T , which contains the window signal along the input
delay line of the filter. However, in the absence of the index n, is worth x→ xn and
w→wn. Thus, as in Eqn. (4.3), we can write the convolution as the inner (or dot)
product between input and weight vectors y[n] = xTw = wTx.

Hence, indicating by ∆wn the coefficients’ variation (calculated according to some
law described below) at time defined by the index n, we can write the adaptation rule
as wn = wn−1 + ∆wn.

Let d[n] be the reference signal, also denoted as target or desired signal, the weight
vector w is determined by minimizing a certain cost function (CF) or performance
function of the a priori error that is defined as

e[n] = d[n]−y[n] = d[n]−wTx. (7.1)

If the stochastic nature of the input signals x and d[n] are a priori known, the CF
is some statistic function of the error signal. In these cases it is usual to consider the
statistical expectation1 of the squared error. Such quantity indicate as mean-squared
error (MSE) is defined as

J(w) = E{|e[n]|2}. (7.2)

The minimization of Eqn. (7.2) is used to determine a closed form solution of a given
problem, by a stochastic optimization criterion called minimum mean squared error
(MMSE).

If the statistic of the input signals are unknown it is possible to proceed numerically
starting from an empirical estimate of the MSE. In this case, we more properly speak
of sum of squared error (SSE) and the CF can be written as

J(w) = Ê{|e[n]|2}= 1
N

∑
n

|e[n]|2. (7.3)

1 If X is a random variable with probability density function pX(x), its expected vaule is defined
as E(X) =

∫∞
−∞xp(x)dx.

7.2 Adaptation with Stochastic and Approximate Stocastic Optimization 335

The minimization of Eqn. (7.3) is performed by the class of least squares (LS) al-
gorithms. The LS criterion can be considered as an approximation of the stochastic
MSE criterion where the expectation operator, in practice, is replaced directly by an
empirical time average operator. Therefore is the following approximation is consid-
ered E{|e[n]|2} ≈ Ê{|e[n]|2}. If this approximation is true the stochastic process e[n]
is defined as an ergodic process.

A schematic representation of the learning paradigms based on the error minimiza-
tion is illustrated in Fig. 7.2.

Fig. 7.2 Schematic rep-
resentation of adaptation
with stochastic vs. ap-
proximate stochastic opti-
mization and the batch vs.
online learning algorithms.
(Courtesy of [11]).

 2
Stochastic CF () []J E e n w

BATCHON LINE

Wiener filter

normal equations of Wiener-Hopf

or stochastic normal equations

Method of

Normal equations of Yule-Walker

or deterministic normal equations

LSWidrow-Hoff
LMS Algorithms

Steepest descent
algorithms

Deterministic CF

or Approximate Stochastic

2ˆ() []
n

J e n w

While the stochast approach it is intrinsically a batch method, the approximate
stochastic optimization algorithms can be derived in a recursive or non-recursive or
batch formulation. In batch, formulation the fundamental hypothesis is to know the
entire signals (i.e. the training set), or a portion, acquired by direct, usually noisy,
measures. In these cases, when it is possible to consider ergodic and stationary input
processes, the expectation can be replaced with its time average calculated over N
signal samples.

7.2.1 Normal Equations in the Discrete Wiener-Hopf
Notation

In the Wiener’s optimal filtering theory [1]-[3], the performance function is the ex-
pectation of the squared error. From the error definition in (7.1) we can write

J(w) = E
{
e2[n]

}
= E

{
d2[n]−2wTxnd[n] +wTxnxTnw

}
(7.4)

then, if xn is a zero-mean stationary stochastic process its covariance/correlation
matrix is defined R ∈ RM×M = E{xnxTn}. Again, if d[n] is a zero-mean stationary
stochastic process, the cross-correlation vector between xn and d[n] is defined as
g ∈ RM×1 = E{xTnd[n]}, so the above equation can be rewritten as

J(w) = E
{
d2[n]

}
−2wTg +wTRw (7.5)

336 7 Adaptive Audio Processing

that is a quadratic function of the tap-weight vector w with a single global minimum.
The Wiener’s solution can be found by solving the following optimization problem

wopt ∴ argmin
w∈RM×1

{J(w)} . (7.6)

The gradient vector of the performance function (7.5) can be written as

∇J(w) ∈ RM×1 =
∂
[
E
{
d2[n]

}
−2wTg +wTRw

]
∂w = 2(Rw−g) (7.7)

while the second derivative, i.e. the Hessian matrix, is

∇2J(w) ∈ RM×M =
∂2 [E{d2[n]

}
−2wTg +wTRw

]
∂w2 = R. (7.8)

Thus, as ∇J(w)→ 0, the optimal solution of Eqn. (7.5), can be obtained solving the
so-called Wiener-Hopf normal equations

Rw = g (7.9)

that is
wopt = R−1g. (7.10)

Moreover, replacing w by wopt and Rwopt by g in Eqn. (7.5) we obtain minimum
error energy that can be written in the following equivalent forms

Jmin(w) = E
{
d2[n]

}
−wT

optg
= E

{
d2[n]

}
−wT

optRwopt

= E
{
d2[n]

}
−gTR−1g.

(7.11)

Property 7.1. Note that, let h be a “target model”, i.e. such that d[n] = hTx+η[n],
in the case of independent noise η[n] with variance σ2

η, at the optimal solution (i.e.
for wopt = h) we have that

E{d2[n]}= E{(wT
optx+η[n])2}= σ2

η +wT
optRwopt.

So, from the Eqn. (7.11), the minimum error energy is equal to

Jmin(w) = σ2
η (7.12)

which is the reason why η[n] is referred to as irreducible noise and σ2
η represents the

lower bound for the linear adaptive filter learning algorithm performance.

Remark 7.1. In the Wiener’s optimal filtering theory, the filter’s inputs are con-
sidered as a stochastic processes (SPs) described in terms of their a priori known
second-order statistics (i.e. its correlation matrix and its cross-correlation vector).
The vector of the filter weights is considered as deterministic unknown and the calcu-
lation of optimal filter coefficients wopt, is made minimizing the statistical CF defined

7.2 Adaptation with Stochastic and Approximate Stocastic Optimization 337

by the MSE (7.4). However, note that many authors (see e.g. [6]-[11]) define the adap-
tive filter (AF), the filter whose parameters are iteratively adjusted based on the new
signal samples that gradually flows to its input.

7.2.2 Normal Equations in the Yule-Walker Notation
Although the Wiener theory has great relevance in obtaining results in a closed form,
in adaptive filtering the optimal solution is determined by minimizing a deterministic
CF Ê

{
e2[n]

}
, where Ê is an empirical approximation of the error expectation (7.2).

In the LS method, the characteristic of the data-block (batch or mini-batch), de-
fined by the N -length window, is determined considering the nature of the problem.
The following conventions are assumed:

• the measurement interval, also denoted analysis window, is limited: n ∈ [0,N−1];
• the signal is zero outside the analysis window.

So, explicitly writing the error (7.1) at time instants 0, 1 , ..., N −1, we have that

e[0] = d[0]−xT0 w
e[1] = d[1]−xT1 w

...
e[N −1] = d[N −1]−xTN−1w.

(7.13)

The set of equations (7.13) can be written in compact form as

e = d−Xw (7.14)

denoted as ordinary linear least squares (OLS) or simply least squares (LS) model,
where X∈RN×M is defined as data matrix that contains all available data, d∈RN×1

is the desired signal vector and e ∈ RN×1 is the error vector
Moreover, the CF (7.3) can written as

J(w) =
N∑
i=1

e2
i =

N∑
i=1

(di−xTi w)2 = eT e

= [d−Xw]T [d−Xw]

(7.15)

developing the product, we get the following quadratic form

J(w) = dTd−2wTXTd+wTXTXw. (7.16)

For the gradient of J(w), we have that

∇J(w) , ∂J(w)
∂w =−2XTd+ 2XTXw (7.17)

and the minimum of the LF is when the gradient is null ∇J(w)→ 0; i.e. for

338 7 Adaptive Audio Processing

XTXw = XTd. (7.18)

Note that, the previous expression are the Yule-Walker normal equations. Thus, solv-
ing for w, we obtain the LS solution defined as

wLS = (XTX)−1XTd. (7.19)

Remark 7.2. Note that from statistical interpretation, comparing expressions of the
Wiener and LS quadratic CFs, we have that Rxx ∈ RM×M = XTX is an empirical
estimation of the covariance matrix R; and that Rxd ∈ RM×1 = XTd is an empir-
ical estimation of the cross-covariance vector g. Moreover, the OLS is a maximum
likelihood estimation (MLE).

In addition, due to its nature, the matrix XTX may be ill-conditioned and the equa-
tions system has no solution, and in this case the problem is hill-posed, A simple
“trick”, in order to have reliable and “more regular” solution, and also to avoid nu-
merical errors, it is prefered to solve the system of equations by adding a diagonal
matrix such as

wLS = (XTX+ δI)−1XTd (7.20)

where δ is a “small” constant defined as regularization parameter.

Remark 7.3. Observe that for N >M , the term X# = (XTX)−1XT , is the general-
ized inverse, also called pseudo-inverse or Moore–Penrose inverse, of the matrix X. In
other terms, the LS solution is the solution of a linear equation system: wLS = X#d.

7.3 First Order Adaptive Algorithm

The simple adaptive method, developed in 1959 by Widrow-Hoff [5], denoted as
Widrow-Hoff delta rule or Least Mean Squares (LMS) algorithm, can be derived con-
sidering the most simple approximation of the CF (7.2).

7.3.1 Least Mean Squares Algorithm
In order to introduce the LMS, consider a simple online adaptation procedure where
the recursive estimator has a form of wk = wk−1 + ∆wk, where k = 0, 1 , ...; is the
iteration index and where the adaptation parameter is defined as ∆wk ∝ −∇J(w).
So, the adaptation rule can be written as

wk = wk−1 + 1
2µ{−∇J(wk)} , for k = 0,1, ... (7.21)

where µ is a “small constant” defined as step size or learning rate, and 1
2 has been

introduced for a further simplification.
Thus, let’s define w−1 the initial condition (i.c.), i.e. starting from a “small” values

random configuration (of a given distribution), the estimated results is obtained after
a “sufficient” number of iterations.

7.3 First Order Adaptive Algorithm 339

Table 7.1 LMS algorithm for adaptive filtering

Given input and desired sequences [x[n] d[n]]Nn=1
Initialization w, µ
Delay-line definition xn← 0

xn = [x[n];xn(1 :M −1)]; // DL update: shift and load a new input sample

y[n] = wTxn; // compute the filter output

e[n] = d[n]−y[n]; // compute the a priori error

w = w +µ ·e[n] ·xn; // LMS adaptation rule

}

In LMS in order to determine the “best” AF weigts we minimize directly the square
of the error e2[n] in other words, in LMS the CF is defined as

J(w) = e2[n]. (7.22)

The gradient of (7.22), evaluated at the index k assume the form

∇J(w) , ∂J(w)
∂w =−2(dk−wTxk)xk (7.23)

and, as the error is: ek = dk−wTxk, we can write

∇J(w) =−ekxk (7.24)

finally, the recursive formula (7.21) for each adaptation step, can be written as

wk = wk−1 +µekxk, for k = 0, 1, 2, (7.25)

This algorithm is the well known least mean squares (LMS) and is also known as the
Widrow-Hoff learning rule [5] that can be formulated as reported in Table 7.3.1

Remark 7.4. Note that, in adaptive algorithms the CF’s gradient is not a priori
known and the quantity ∇J(w) represents a local estimate of the true gradient vec-
tor. This class is referred to as sthocastic gradient algorithms (SGA) and the most
widespread family derived from that class, is the LMS algorithm (7.25), that, in ad-
dition can be also derived from the recursive solution of the normal equations of
Yule-Walker.

7.3.2 Adaptive Algorithm Convergence Analysis
Adaptive algorithms as the LMS in (7.25), generalized as wk = wk−1 +f(ek,xk), can
be considered as a dynamical systems and their performance analysis can be evaluated
based on the fundamental aspects of: stability, convergence speed, error at steady state,
transient behavior, and tracking capability; expressed in terms of opportune statistical

340 7 Adaptive Audio Processing

functions of the error signal. Here, for brevity, we will deal only with the first three
aspects: stability, convergence speed and error at steady state.

Fig. 7.3 The performance
analysis model is an identi-
fication model used for the
statistical analysis of the
performance of adaptive
algorithms. Ideally, for a
high number of iterations,
the adaptive filter weights
tend on average to the true
model, while the error vari-
ance tends to the variance
of the irreducible noise.

[]e n

[]y n

[]d n

2[] (0,)vv n

Irreducible noise
0w

1nw

0

2 2

lim

lim []

n
n

v
n

E

E e n

w w

Convergence

1
opt 0

 w w R g

Ideal Wiener optimal solution

[] (0,1)x n

For both theoretical and experimental statistical analysis of adaptive algorithms
performance, is considered a simple performance analysis model, that consists in a
simple identification problem as illustrated in Fig. 7.3. The weights w0 represents
the target model (usually random generated and for tracking capability measure are
time-variant), while the irreducible noise is a zero-mean Gaussian noise with a priori
known variance. The input x[n] is usually white or colored noise with unitary variance.

7.3.2.1 LMS Weak-Convergence Statistical Analysis

From Eqn. (7.25), subtracting the target w0 = wopt from both members, and defining
the error vector as un = wn−w0, the adaptation rule can be written as

un = un−1 +µe[n]xn. (7.26)

Let v[n] = d[n]−wT
0 xn, be the error at optimal solution, we can express the a priori

error as e[n] = v[n]−un−1xn, that substitute in (7.26) allows to write

un = (I−µxnxTn)un−1 +µv[n]xn (7.27)

where the quantity un, v[n] and xn can be considered discrete stochastic processes
(SP), and for this reason the Eqn. (7.27) can be considered as time-varying stochastic
difference equation (SDE). The forcing term µv[n]xn is due to irreducible noise v[n]
whose causes are due to the measurement error, the quantization effects and other
noise sources.

Remark 7.5. The determination of the statistical solution of a SDE is very complex
because it requires the calculation of both sides first and second order moments.
For example, taking the expectation of (7.27) we note the presence of third-order
moment E{xnxTnun−1}. This causes some mathematical-statistical difficulties and,
for this reason, is preferred to refer the assumption of independence2.
2 For independence is E{unvn}= E{un}E{vn}.

7.3 First Order Adaptive Algorithm 341

A first simplification for the study can be made by considering a very small adapta-
tion step size µ� 1 such that term appearing in (7.27) can be simplified. With this
condition the approximation (I−µxnxHn) ∼ (I−µR) holds, so Eqn. (7.27) can be
rewritten as

un = (I−µR)un−1 +µv[n]xn.

A second simplification for the statistical study of LMS convergence can be done
by the Direct-Averaging Method (DAM)) [14], i.e. considering the (7.27) as a normal
ordinary difference equation (ODE) respect to the averaged quantity. Thus, taking the
expectation of both side of previous equation we can analyze the first order solution.
For the independence of the quantity xn and v[n], we have E{µv[n]xn} = 0, so

E{un}= (I−µR)E{un−1}.

Decomposing the correlation matrix R with the unitary similarity transformation
Λ = QTRQ, posing ûn = QTun, we can write

E{ûn}= (I−µΛ)E{ûn−1} (7.28)

where Λ = diag(λ0,λ1, . . . ,λM−1) is the so called spectral matrix defined as diagonal
matrix formed with the eigenvalues of R (any autocorrelation matrix can be factorized
in this way). The (7.28) corresponds to a set of M disjoint first order finite difference
equations, with time index n, of the type

E{ûn(i)}= (1−µλi)E{ûn−1(i)}, n≥ 0, i= 0, 1, . . . , M −1. (7.29)

Let û−1(i) be the i.c. of the above iterative equation, the solution can be found by
back substitution which is

E{ûn(i)}= (1−µλi)nû−1(i) (7.30)

which is stable if the following condition is satisfied

|1−µλi|< 1 or 0< µ <
2
λi
. (7.31)

It follows that lim
n→∞

E{ûn(i)}= 0, ∀i ∈ [0,M −1], we can then write

lim
n→∞

E{ûn}= 0

or, equivalently
lim
n→∞

E{wn}= w0.

It can be said then that, for n→∞, the vector wn converges in average to the Wiener
optimal solution. ut

342 7 Adaptive Audio Processing

7.3.2.2 Convergence Speed and Condition Number of Hessian Matrix

From Eqn. (7.30), each coefficient ûn(i) decays to zero, i.e. wn(i)→ wopt(i), with
a speed that depends on µ and on the value of its relative eigenvalue λi. So if the
eigenvalues are very different from each other, i.e. high eigenvalue spread or eigen-
spread, the convergence of the filter is conditioned by the smallest eigenvalue (i.e. the
slowest mode). In this case it is said that convergence is not uniform.

For example, in Fig. 7.4 there is an example of convergence to the optimal values for
a 2 coefficients filter (M = 2), considering two different step-size values. In right part
of the figure is reported the trajectory of the weights superimposed on the contour
plot of the quadratic performance surface J(w). It is observed that the trajectories
of the two cases are similar, but the convergence speed is different.

w
0
[n

],
w

1
[n

]

w
1
[n

]

opt,0 0.6w

opt,0w

opt ,1w

0,0[]w n

0,1[]w n

1,0[]w n

1,1[]w n

1 0.95

0.95 1

R

opt,1 0.8w

Fig. 7.4 Asymptotic
convergence of weights
wn (for M = 2) to-
wards the optimal value
wopt = [0.6 − 0.8]T . In
right part of the figure is
reported the trajectory of
the weights superimposed
on the contour plot of the
quadratic function J(w).
Note that for high values
of µ the convergence is
faster.

Remark 7.6. Note that, the convergence speed depends on the shape of the perfor-
mance surface (7.5), and that R (that also is the Hessian matrix of the surface J(w)),
precisely describes the shape of the contour of J(w).

Thus, the most influential effect for the convergence speed, is determined by the
condition number of the covariance matrix defined as

X (R) , λmax/λmin.

Moreover, from basic geometry remember that the eigenvectors corresponding to the
eigenvalues λmax and λmin are pointing, respectively, to the directions of maximum
and minimum curvature of J(w).

Remark 7.7. Observe that the convergence slows down if the surface is more eccen-
tric (as that in Fig. 7.4), i.e. if the eigenspread is very high λmax/λmin � 1. For a
circular contour of J(w), is X (R) = 1 and the convergence to the optimum point can
be obtained (theoretically) in one adaptation step.

Thus, from Eqn. (7.30) the LMS algorithm converges in probability on average to the
Wiener optimal solution (i.e. Pr{limn→∞E{wn}= wopt}= 1) when the learning rate

7.3 First Order Adaptive Algorithm 343

satisfy the stability condition (7.31). Thus, the fastest convergence of the dominant
mode is obtained for µ= 1

λmax
.

However, since for large M the estimate of λmax is difficult and complex, the
stability constraint is difficult to apply. Therefore to ensure convergence we need to
consider a simpler and more practical criteria than that in Eqn. (7.31). So, considering
the trace of the covariance matrix we have that tr(R) >

∑M−1
i=0 λi > λmax and, as

tr(R) = M · r[0] (where r[0] = E{x2[n]}), in practice a limit to the step-size that
better guarantees convergence can be written as

0< µ <
2

M ·E{x2[n]}

which assure the mean convergence of the weights. The convergence of weights vari-
ance limn→∞E{unuTn} = 0 (or small constant), requires more precautionary condi-
tions that can be written as

0< µ <
µ0

µ1 +M ·E{x2[n]} (7.32)

where µ1 avoids division by zero when the signal is zero, and µ0 is determined exper-
imentally (some authors, for Gaussian input suggest: 0.01< µ0 < 0.1).

A quantity often considered in the convergence analysis is the excess of error,
defined as follows.

Definition 7.1. Excess of steady-state error - We can defined the excess of er-
ror respect to steady-state MSE (EMSE), denoted as JEMSE, the quantity such
that Jn→∞ = Jmin + JEMSE. So for (7.11) and (7.27) we can write Jn = Jmin +
E
{
uTn−1Run−1

}
, i.e.

JEMSE = E
{

uTn−1Run−1
}

= tr [RKn−1] (7.33)

where Kn , E{unuTn} is the covariance of the error vector.
In other words, the excess MSE is the power of the additional error in the filter output
due to the errors in the filter coefficients.

Definition 7.2. Misadjustment - An equivalent measure of the excess MSE in steady-
state is the misadjustment, defined as

M,
JEMSE

J(wopt)
= JEMSE

σ2
v

(7.34)

In addition, the following property is also valid.
Property 7.2. Indicating with Jmin(w) = σ2

η, the theoretical minimum level of the
CF, considering the the excess of steady-state error and second-order statistical anal-
ysis, for brevity not reported (see for example [11]), it is possible to prove, that for
a number of iterations that tends towards infinity (i.e. at steady-state), the following
relation is valid

Jn→∞(wn)≈ σ2
η

(
1 + µ

2 ·M ·E{x
2[n]}

)
. (7.35)

344 7 Adaptive Audio Processing

The previous relation is valid only for µ� 2/λmax. Moreover, note that, when the
input is x[n]∼N (0,1) its correlation matrix is R ∈ RM×M = I, i.e. λmax = λmin = 1
and thus, the Eqn. (7.29) convergence uniformly.

7.3.2.3 Experimental Performance Analysis and Convergence

To experimentally monitor the adaptation process, it is often useful to consider the
plot of the learning curve, i.e. the MSE (or its log and smooth value), respect to
the algorithm iterations J(wn), for n=0,1, However, as the MSE is a statistical
quantity, more properly, it should be plotted its ensemble average.

Practically, what we plot is a simple arithmetic average, sometime also smoothed
by a zero-phase low-pass filter. The curve is evaluated on a certain number of different
runs considering the performance analysis model in Fig. 7.3. The modeling experiment
is repeated several time and averaged, starting from different weights i.c.

Fig. 7.5 Steady-state er-
ror evaluated with (7.35)
for two different learn-
ing rate and filter length
values reported in figure.
For each experiment were
considered the average of
200 runs with different i.c.
(Modified from [11]).

0 500 1000 1500 2000
Samples

-50

-40

-30

-20

-10

0

M
S

E
 [d

B
]

 1
0l

og
(J

(w
))

Learning curves comparison n. aver. = 200

Learning rate = 0.050 M = 10
Learning rate = 0.005 M = 10
Steady-state MSE
SNR level

0 500 1000 1500 2000
Samples

-50

-40

-30

-20

-10

0

M
S

E
 [d

B
]

 1
0l

og
(J

(w
))

Learning curves comparison n. aver. = 200

Learning rate = 0.050 M = 20
Learning rate = 0.005 M = 20
Steady-state MSE
SNR level

For example, in Fig. 7.5 are reported the estimate learning curves averaged over
200 runs. In particular is plotted the MSE evaluated in decibel (i.e. 10 · log10 e

2[n])
vs. the learning iterations n. Note that, for small learning rate µ = 0.005, the curve
reaches the lower limit due to the irreducible noise set at −50 dB (noise level in the
figure). while for higher values µ= 0.05, the steady-state error is approximately equal
to the the lower limit value determined by the theoretical analysis in Eqn. (7.35) (also
reported in the figure).

As a further experiments, in, in Fig. 7.6 are reported the comparison of LMS
learning curve averaged over 200 runs for M = 8, when the input is a simple unit
variance Gaussian white noise (WGN), and for unit-variance narrow-band colored
process generated by a simple 1-st order moving average Markov process defined as

x[n] = bx[n−1] +
√

1− b2η[n], η[n]∼N (0,1). (7.36)

It should be noted that in the case of input colored noise, the covariance matrix of
the input signal is no longer the unitary matrix but takes the form

7.3 First Order Adaptive Algorithm 345

Fig. 7.6 Comparison
of LMS learning curve,
for different step-size µ
averaged over 200 runs.
left) white noise (b = 0.0)
input; right) narrowband
MA colored process (b =
0.9). (Modified from [11]).

M
S

E
 [d

B
]

 1
0l

og
(J

(w
))

M
S

E
 [d

B
]

 1
0l

og
(J

(w
))

0 200 400 600 800 1000
Samples

-60

-50

-40

-30

-20

-10

0

10

M
S

E
 [d

B
]

 1
0l

og
(J

(w
))

Learning curves comparison b=0.0 av.=200

LMS =0.0005
LMS =0.001
LMS =0.005
LMS =0.01
LMS =0.05
LMS =0.1
MSE bound

0 200 400 600 800 1000
Samples

-60

-50

-40

-30

-20

-10

0

10

M
S

E
 [d

B
]

 1
0l

og
(J

(w
))

Learning curves comparison b=0.9 av.=200

LMS =0.0005
LMS =0.001
LMS =0.005
LMS =0.01
LMS =0.05
LMS =0.1
MSE bound

Rxx = σ2
η

1 a a2 · · · aM−1

a 1 a · · · aM−2

a2 a 1 · · ·
...

...
...

... . . . a
aM−1 aM−2 · · · a 1

for which the convergence conditions expressed by the (7.31) are more difficultly
verified.

7.3.3 LMS Algorithm’s Variants
In the literature there are many LMS algorithm variations. Generally, these variants
are made to have a better convergence speed, or better steady-state performance, or
others, tend to stabilize the weight trajectories, ect.

7.3.3.1 Normalized LMS Algorithm

The normalized LMS (NLMS) algorithm is a direct consequence of the expression
(7.32), and represents a very used variant to accelerate the convergence speed at the
expense of a modest increase in the computational cost. The NLMS is characterized
by a variable learning rate according to the following law

µn = µ

δ+‖xn‖22
(7.37)

so, the update formula is

wn = wn−1 +µ
e[n]xn
δ+xTnxn

. (7.38)

With µ ∈ (0,2] and δ > 0. Note that δ is the regularization parameter which also
ensures the computability of (7.38) in the case of zero input.

The Eqn.s (7.37)-(7.38) indicate that the step size is inversely proportional to the
energy of the input signal. Given the implementative simplicity, the NLMS is one

346 7 Adaptive Audio Processing

of the most used algorithms in the audio equalization applications, echo cancelation,
active noise control etc.

Remark 7.8. Observe that a simple way to reduce the number of multiplications for
the ‖xn‖22 calculation, is obtained by observing that the vector xn contains M − 1
common values with the xn−1 vector. For this reason, the following relationship holds

‖xn‖22 = ‖xn−1‖22−|x[n−M]|2 + |x[n]|2 (7.39)

7.3.3.2 Proportionate LMS Algorithms

The proportionate NLMS (PNLMS) algorithm, proposed in [43], is characterized by
an adaptation rule of the type

wn = wn−1 +µ
gn−1xne[n]

δp+xTnGn−1xn
(7.40)

where 0 < µ < 1 and gn ∈ RM×M = diag[gn(0) gn(1) · · · gn(M −1)] is a diagonal
matrix identified in order to adjust the steps size of the filter weights in an individual
mode. The Gn matrix is determined so as to have the step size proportional to the
amplitude of the considered filter coefficient. In other words, the larger coefficients
have a greater increase. Following this philosophy, a possible Gn matrix choice, is the
following

γn[m] = max{ρ · (max[δp, |wn[0]| , ..., |wn[M −1]|]), |wn[m]|} (7.41)

gn(m) = γn[m]
‖γn‖1

, m= 0, 1, ..., M −1 (7.42)

where γn ∈ RM×1 = [γn[0] · · · γn[M −1]]T and δp,ρ ∈ R+, called precautionary con-
stants, have typical values ρ = 0.01 and δp = 0.01. In practice δp is a regularization
parameter that ensures the consistency of the (2.106), also for null taps, ρ serves to
prevent stalling of the m-th coefficient wn[m] when its amplitude is lower than the
amplitude of the maximum coefficient.

In the algorithm called improved PNLMS (IPNLMS) [44], a more elegant Gn ma-
trix choice, is proposed

γn[m] = (1−β)‖wn‖1
M

+ (1 +β) |wn[m]| (7.43)

gn(m) = γn[m]
‖γn‖1

= (1−β)
2M + (1 +β) |wn[m]|

2‖wn‖1
, m= 0, 1, ..., M −1

(7.44)

where (–1 <β <1) represents the proportionality control parameter. Note that for
β = −1 , the IPNLMS coincides with the NLMS. As reported in [44], [45], a good
choice of the parameter of proportionality β is –0.5 or 0. Furthermore, in the IPNMLS
is usual, to choose the regularization parameter with in the form

7.3 First Order Adaptive Algorithm 347

δp = (1−β)
2M δ (7.45)

where δ is the NLMS regularization parameter.

Remark 7.9. The proportional algorithms, are suitable in the case of systems identi-
fication with sparse impulse response. A simple definition of sparsity is the following:
an impulse response is called sparse if a large fraction of its energy is concentrated in
a small fraction of its duration. In more formal terms, a simple measure of an impulse
response w sparseness is the following [45]

ξ(w) , M

M −
√
M

(
1− ‖w‖1√

M ‖w‖2

)
(7.46)

where, we remind the reader that the L1 and L2 norms are defined, respectively, as

‖w‖1 =
M−1∑
m=0

|w[m]|, ‖w‖2 =

√√√√M−1∑
m=0

|w[m]|2 (7.47)

for which 0≤ ξ(w)< 1 and for sparse w, we have that ξ(w)→ 1.

Remark 7.10. Note that, a typical example of sparse impulse response, is the one
that refers to TF of an acoustic path in a reverberating environment as, for example,
the impulse response shown in Fig. 3.7 (see §3.2.4.1).

7.3.4 Mini Batch or Block Adaptive Filter
In the block or mini batch algorithms class, represented schematically in Fig. 7.7,
the input signal is stored in a L-length buffer (block length), to allow the output and
weights update to be periodically calculated, with a period equal to L.

Said k the block index and wk ∈ RM×1 the filter weights vector, the parameter
update is characterized by a relation of the type

wk+1 = wk+ 1
L

∆wk (7.48)

in which ∆wk, defined as a block update parameter, is given by the sum of the instan-
taneous variations ∆wi, i.e.

∆wk =
L−1∑
i=0

∆wi. (7.49)

With this definition, said i the time index inside the block, the input sequence time
index n is defined as

n= kL+ i,
i= 0, 1, . . . , L−1
k = 1, 2,

(7.50)

348 7 Adaptive Audio Processing

Fig. 7.7 General scheme
of a block adaptive filter.

Buffer
P S

Buffer
S P

Buffer
S P

[]x n []y n

[]d n

kx ky

ke []e n

Series - parallel
conversion and
buffer composition

Parallel - series
conversion

Filter

k k ky X w

Adaptation
(,)k kf X e

The term ∆wi is linked to the instantaneous estimate of the CF gradient ∇Ji and
its calculation is performed for every block index, while keeping fixed filter coefficients.

The input signal, as in the LS methodology, is stored in a matrix Xk, indicated
as block data matrix or simply block data, such that the k-th block output can be
calculated as the convolution sum expressed in terms of the following matrix-vector
product

yk = Xkwk. (7.51)

Thus, the k-th block data matrix Xk ∈ RL×M can defined, by row (or column com-
position) of the input signal, as

Xk =
[
xkL xkL−1 · · · xkL−L+1

]T (7.52)

where the signal vectors xkL = [x[kL], x[kL−1]..., x[kL−M + 1]]. In addition, note
that the matrix Xk contains the input signal samples arranged in columns/rows
shifted of one sample. For example, in the case of L = 4 and M = 3 for the k-th
index the (7.51) can be expressed as:

k →

y[4k]

y[4k−1]
y[4k−2]
y[4k−3]

=

x[4k] x[4k−1] x[4k−2]

x[4k−1] x[4k−2] x[4k−3]
x[4k−2] x[4k−3] x[4k−4]
x[4k−3] x[4k−4] x[4k−5]

wk[0]
wk[1]
wk[2]

while for the k−1-th index we have that

k−1→

y[4k−4]
y[4k−5]
y[4k−6]
y[4k−7]

=

x[4k−4] x[4k−5] x[4k−6]
x[4k−5] x[4k−6] x[4k−7]
x[4k−6] x[4k−7] x[4k−8]
x[4k−7] x[4k−8] x[4k−9]

wk−1[0]
wk−1[1]
wk−1[2]

note that for L=M , the matrix Xk is Toeplitz.

For other vectors, similar to LS algorithm in §7.2.2, we have the following definitions

dk ∈ RL×1 ,
[
d[kL] d[kL−1] · · · d[kL−L+ 1]

]T
yk ∈ RL×1 ,

[
y[kL] y[kL−1] · · · y[kL−L+ 1]

]T
ek ∈ RL×1 ,

[
e[kL] e[kL−1] · · · e[kL−L+ 1]

]T (7.53)

7.3 First Order Adaptive Algorithm 349

for which, for the error vector can be defined as

ek = dk−yk. (7.54)

From (7.51), the filter coefficients wk remain constant for all L output samples yk
and the convolution can be performed with a block algorithm.

As regards the block length, we can identify three distinct situations: L=M , L<M
and L >M . The most common choice is that in which the block length is equal to
(or less) the filter length and, in this case, the possibility to compute the convolution
in the frequency domain suggests filter lengths equal to powers of two.

7.3.4.1 Adaptive Filtering by Block LMS

The block (full batch or mini batch) algorithms, can be extended to adaptive filter-
ing process if the data matrix is filled by the input sequence with a sliding window
mechanism. For example, considering a N -samples sequence, the data matrix can be
defined defining M -length window (for M ≤N) , which flows on the signal and fills
the row of matrix X as shown in Fig. 7.8.

To derive the structure of the iterative LS algorithm, we can generalize in vector
form the LMS algorithm. In fact, as the output vector can be expressed as y = Xwn−1,
the gradient of the quadratic cost function in Eqn. (7.17) can be written as

∇J(w) , ∂J(w)
∂w =−2XT (d+y) =−2XT e. (7.55)

So, incorporating all the scalar parameter in the learning rate µn, we can write

wn = wn−1 +µn [−∇J(w)] (7.56)

that is equivalent the following forms denoted as block LMS algorithm (BLMS)

wn = wn−1 +µnXT
nen (7.57)

where note that the data-matrix Xn is a Toeplitz matrix, that is defined as a matrix
where each descending diagonal from right to left (or left to right) is constant3.

In addition, to ensure the algorithm stability, the parameter µn should be upper-
bounded. In fact, note that the algorithm coincides with that of Landweber [12], which
converges to the LS solution, when the learning rates, are such that 0< (I−µnXTX<
1. In other words, similar to the condition (7.31), the learning rates are such that
0 < µn <

1
λmax

(where λmax is the maximum eigenvalue of XTX). The algorithm
converges quickly in case that µn is close to its upper limit.

Remark 7.11. Note that the expression (7.57) in the adaptive filtering is sometime
denoted as the empirical steepest descent algorithm (SDA).
3 Toeplitz symmetry allows the development of many robust inversion algorithms with a reduced
computational complexity, as the Levinson algorithm (that is O(M2)). A Toeplitz matrix can also
be decomposed (i.e. factored) in O(M2) time for example by the LU decomposition that gives a
quick and robust method for solving a LS system, and also for computing the determinant [11].

350 7 Adaptive Audio Processing

BLMS learning rule

T
k k kL

 w X e

..., [], [1]

..., [], [1]

x n x n

d n d n

 , X d

Output
buffers
emptying

0 1

[]

[]

k N

y n

e n

y

e

,y e

..., [], [1]

..., [], [1]

y n y n

e n e n

Matrix

filling

[]

[]

0 1

0 1

x k

d k

k N

i M

X

X

d

N M
k

X
Data - matrix

Block-volver

k ky X w

Serial - to - Parallel
Data Converter

Parallel - to - Serial
Data Converter

Input Sequence
x(1) = 0.3840
x(2) = 1.5784
x(3) = ‐0.5082
x(4) = 0.2600
x(5) = 0.4096

x(6) = ‐0.6471
x(7) = ‐0.7627
x(8) = ‐0.2892
x(9) = 2.3531
x(10) = 3.6249

x(11) = 1.5734
x(12) = 3.2688
x(13) = 2.8062
x(14) = 1.9193
x(15) = 1.8539

x(16) = 1.1514
x(17) = 0.7173
x(18) = 1.5660
x(19) = 2.1024
x(20) = 2.4838

x(21) = 2.2182
x(22) = 0.6904
x(23) = 0.9955
x(24) = 1.8611
x(25) = 1.6519
x(26) = 1.8952
. . .

5x3 data‐matrix, index block k=1
 0.3840 0 0
 1.5784 0.3840 0
 ‐0.5082 1.5784 0.3840
 0.2600 ‐0.5082 1.5784
 0.4096 0.2600 ‐0.5082
5x3 data‐matrix, index block k=2
 ‐0.6471 0.4096 0.2600
 ‐0.7627 ‐0.6471 0.4096
 ‐0.2892 ‐0.7627 ‐0.6471
 2.3531 ‐0.2892 ‐0.7627
 3.6249 2.3531 ‐0.2892

5x3 data‐matrix, index block k=3
 1.5734 3.6249 2.3531
 3.2688 1.5734 3.6249
 2.8062 3.2688 1.5734
 1.9193 2.8062 3.2688
 1.8539 1.9193 2.8062

5x3 data‐matrix, index block k=4
 1.1514 1.8539 1.9193
 0.7173 1.1514 1.8539
 1.5660 0.7173 1.1514
 2.1024 1.5660 0.7173
 2.4838 2.1024 1.5660

Fig. 7.8 Mini-batch LS adaptive filtering scheme and data matrix X filling mechanism

7.3.4.2 Summary of BLMS Algorithm

The BLMS algorithm is then defined by the following iterative procedure

yk = Xkwk

ek = dk−yk
wk+1 = wk+ µB

L
XT
k ek

(7.58)

Remark 7.12. The first of (7.58) represents a convolution, while the third a cross-
correlation. In order to obtain greater computational efficiency and, moreover, better
convergence characteristics, as we shall see in the following, both expressions can be
implemented in the frequency domain.

7.4 Second-Order Adaptive Filtering

This Section introduces the second-order algorithms for the solution of the Yule-
Walker normal equations. Besides the gradient, in the second order algorithms is used
the information of the second derivative, referred to as the Hessian matrix (i.e. the
covariance), that takes into account the curvature of the performance surface.

In presence of colored signal the covariance presents a high eigenspread whereby,
for quadratic cost functions, second-order algorithms converge in very few iterations,
at the limit only one [6]-[11]. However, in the audio sector, in the presence of long
impulsive responses, second-order algorithms must be used with great caution and
low-cost variants are used.

7.4 Second-Order Adaptive Filtering 351

7.4.1 Sequential Regression Algorithms

Let us consider the second order derivative ∇2J(w) that is a matrix, denoted as
Hessian matrix, defined as:

∇2J(w) , ∂J(w)
∂w∂wT

= ∂

∂w

[
∂J(w)
∂w

]T

=

∂
∂w1

[
∂J(w)
∂w

]T
∂
∂w2

[
∂J(w)
∂w

]T
...

∂J
∂wM

[
∂J(w)
∂w

]T

=

∂2J(w)
∂w2

1

∂2J(w)
∂w1∂w2

· · · ∂2J(w)
∂w1∂wM

∂2J(w)
∂w2∂w1

∂2J(w)
∂w2

2
· · · ∂2J(w)

∂w2∂wM
...

...
∂2J(w)
∂wM∂w1

∂2J(w)
∂wM∂w2

· · · ∂2J(w)
∂w2

M

(7.59)

If ∇2J(w) is semi-defined positive, that is wT ·∇2J(w) ·w > 0, ∀w, the adaptation
performance can be improved by using a second order update formula defined as

wk = wk−1 +µk
[
∇2J(w)

]−1 {−∇J(w)} . (7.60)

Note that, in LMS the gradient determines the direction of the descent algorithm at
point wk; while considering the Hessian matrix ∇2J(w), (that represents the infor-
mation on the CF curvature), we can determine: 1) the adaptation step length; and
2) the optimal direction towards the CF minimum.

In other terms, let vk = −∇J(w) be the vector of negative gradient direction,
the expression (7.61) can be considered a special case of a more general formulation
written as wk = wk−1 +µkHkvk, where Hk is a weighing matrix determinable as the
inverse of the Hessian matrix Hk = [∇2J(w)]−1, or in various other ways. Thus, the
matrix Hk can be interpreted as a “suitable” linear transformation to determine a
optimum adaptation step (direction and length), such that the descent along the CF,
can be performed in very few steps.

In the literature, there are numerous variations and specializations of the method
(7.61). Some of the most common are below indicated.

7.4.1.1 The Levenberg-Marquardt Variants

In the Levenberg-Marquardt variant [12], [13], the Eqn. (7.61) is rewritten as

wk = wk−1 +µk
[
∇2J(w) + δI

]−1 {−∇J(w)} (7.61)

in which the constant δ > 0, denoted as regularization term, should be chosen consid-
ering two opposing requirements: possibly small to avoid biased solution, and suffi-
ciently large such that the Hessian is always a positive definite matrix and to allow
more “regular” and robust solutions (but affected by some bias).

352 7 Adaptive Audio Processing

7.4.1.2 Second Order Online LS Algorithm

In LS cost function the gradient is defined as ∇J(w) ∈ RM×1 = −Xe, while the
Hessian can be approximated by th empirical covariance matrix is∇2J(w)∈RM×M =
XTX = Rxx. So, considering also the Levenberg-Marquardt variant, for δ > 0, the
Eqn. (7.61) can be rewritten in the following equivalent forms of finite-difference
equations (FDE) as

wn = wn−1 +µn(XTX+ δI)−1XT e
= wn−1 +µn(Rxx+ δI)−1XT e = wn−1 +µnX#e.

(7.62)

In other words, the expression (7.62) take into account not only of the gradient but
also of curvature of the performance surface carried out by the term

[
∇2J(w)

]−1.
This formulation is the basic form of second-order adaptive algorithm class.

Remark 7.13. Observe that for N = 1, as xn ∈RM×1, the expression (7.62) has the
form

wn = wn−1 +µnR−1
xx xne[n] (7.63)

denoted as quasi-Newton LMS algorithm.

Remark 7.14. Observe that the formulations (7.62) and (7.63), have only a theo-
retical meaning because in the algorithms used in real applications we tend to avoid
the use of large matrices, let alone their inversion that usually is performed by appro-
priate recursive matrix factoring. Moreover, the recursive solution of the Yule-Walker
equation is usually denoted as Sequential Regression Algorithm (SRA) that is similar
but does not coincide with the so called Recursive Least Square (RLS), algorithm,
and that can be considered as a particular case of the Kalman filter, which instead
provides for a proper weighing of the normal equations by a parameter indicated as
forgetting factor and a fast recursive formulation of the inverse covariance matrix
estimation [6]-[11].

7.4.2 Affine Projection Algorithm
The formulation in Eqn. (7.62) is defined only for overdetermined linear systems
(N >M). In the case of underdetermined system, very common in audio applications
when impulse responses are very long, it is possible to use the following matrix identity

(XT
nXn+ δI)−1XT

n = XT
n (XnXT

n + δI)−1. (7.64)

Moreover, when the number of free parameter is very high, the data-matrix can
be defined over a pre-specified time-depth (or by appropriately selecting a reduced
number of non consecutive equations), as XK×M

n , with K�M . Thus, from the above
identity, the recurvise formulation (7.62) can be rewritten as

wn = wn−1 +µnXT
n (XnXT + δI)−1e. (7.65)

7.4 Second-Order Adaptive Filtering 353

Table 7.2 Affine projection algorithm (APA) for adaptive filtering

Given input and desired sequences [x[n] d[n]]Nn=1
Initialization w, µ, K, δ

Delay-lines and Data-matrix def. xn ∈ RM×1← 0, dn ∈ RK×1← 0, X ∈RM×K ← 0
for n= 0,1, . . . { // for each input samples’ pair

xn = [x[n];xn(1 :M −1)]; // delay-line update: shift and load a new input sample

X = [X(2 :K, :);xTn]; // shift-up the data matrix and load new row vector

dn = [dn(2 :K);d[n]]; // delay-line update: shift and load a new target sample

y = Xw; // compute the filter output

e = dn−y; // compute the a priori error vector

w = w +µXT (XXT + δI)−1e; // APA adaptation rule

}

In this class algorithms, denoted as affine projection algorithms (APAs), the matrix to
be inverted has a size of K×K where the value of K can be chosen as a compromise
between the desired performances and the computational resource available.

In Table 7.4.2 is reported the schematic APA algorithm for the adaptive filtering.

Remark 7.15. This class of APA algorithms, is widely used in adaptive audio appli-
cations since: 1) it has performances very close to the second order algorithms, with a
computational overhead that can be chosen by the user; 2) has excellent performance
in the presence of non-Gaussian input such as the speech signal.

7.4.3 Recursive Least Squares Algorithm
Known in the literature as Recursive Least Squares (RLS), the algorithm is different
from the ordinary LS sequential regression form above described, as the inverse of
correlation matrix is estimated recursively, assuming a certain forgetting factor, and
avoid any matrix inversion.

The CF Ĵn(w) for this class of algorithms, has an expression of the type

Jn(w) =
n∑
i=0

λn−i |e[i]|2 (7.66)

where the constant 0� λ≤ 1, defined as forgetting factor that takes into account the
algorithm memory. In other words, the CF depends on instantaneous current error
λ0e[n] and to the past step errors: λe[n−1], λ2e[n−2], λ3e[n−3], ...; considering a
weighting function defined by the forgetting factor. Note that for λ= 1 the influence of
the past errors has same weight of the instantaneous error, in such case the algorithm
is called growing memory.

354 7 Adaptive Audio Processing

For a complete discussion of the RLS, refer to specialized literature (e.g. [6]-[11]).
Below is a brief summary of the standard RLS.

7.4.3.1 Updating with a priori Error

Consider the Newton LMS algorithm (see Eqn. (7.63))

wn = wn−1 +Pnxne[n] (7.67)

where Pn is an estimate of the inverse of the Hessian matrix. Defining the Kalman
gain vector as kn = Pnxn, the updating formula (7.67) is rewritten as

wn = wn−1 +kne[n]. (7.68)

Table 7.3 Summary of the conventional RLS algorithm.

Given input and desired sequences [x[n] d[n]]Nn=1

Initialization w−1 = 0, x−1 = 0, P−1 = δ−1I, δ, λ
for n= 0,1, . . . { // for each input samples’ pair

xn = [x[n];xn(1 :M −1)]; // shift and load a new input sample

y[n] = wH
n xn; // compute the filter output

e[n] = d[n]−y[n]; // compute the a priori error

kn = λ−1Pn−1xn
1 +λ−1xHn Pn−1xn

; // Kalman gain vector

wn = wn−1 + kne∗[n]; // weights update

Pn = λ−1(Pn−1−knxHn Pn−1); // Riccati equation

}

In RLS the matrix Pn is estimated on-line without explicit inversion with the
matrix inversion lemma 4 (MIL) as

kn = λ−1Pn−1xn
1 +λ−1xHn Pn−1xn

Pn = λ−1(Pn−1−knxHn Pn−1).

A summary of the conventional RLS is reported in Table 7.3.
For more details see [9]-[11].

4 A variant of the matrix inversion lemma (or Sherman-Morrison-Woodbury formula) widely used
in adaptive filtering proposed by Kailath [3], is defined as: (A + xxH)−1 = A−1− A−1xxHA−1

1+xHA−1x .

7.5 Frequency Domain Adaptive Filtering 355

7.5 Frequency Domain Adaptive Filtering

The subject of frequency domain adaptive filtering (FDAF) is a very broad topic,
which presents many variations and specializations, evidenced by the numerous con-
tributions, including recent ones, in the scientific literature (see for example [15]-[23]).

Closely related to the fast frequency domain filtering introduced in §4.6, these
algorithms have a high usability in audio applications in which the filter length is
very high and is also required high computational efficiency.

Series - parallel
conversion
and buffer
composition
mechanism

[]x n []y n

L

k k k

k k k

y X w

Y X W
F 1F

kx ,k kX X ,k ky Y
L

k
 y

,k ky Y

/P S

/S P

k k k

H
k k k

w X e

W X E
G

[]d n
F

kD
/S P

kd

1. 2.

,k ke E

,k kd D
Switch :
1. Time
2. Frequency

Domain
transformation

2. 1.

,k kx X

Optional windowing
constraint

L

N N

,L N
,L N

Filter length :

Block length :

Overlap buffer :

Nr. of Transf. points

Buffer length : 1

F M

L

M

N

N M L

1

1

1

, , (,)

(,)

(,)

, , , ,

,

F

F

N
k k k

M
k

N M
k

N
k k k k k

N N N N

x y d

w

X

F G

X Y D E W

2. 1.

n

L -th blockk

 overlap of M samples

input []x n
 running window

Mblock 1k block 2k

= - length buffer

- old, - new samples

N M + L

M L

(a)

(b)

Parallel - series
conversion

Input buffer composition mechanism

F - domain block algorithms

Fig. 1. Block adaptive filtering algorithms. (a) Input signal
buffer composition mechanism. (b) Indicative framework for
block algorithms in time and in F-transform domain. If the
operator F = I, the algorithm is entirely in the time domain
and the switches 1. or 2. position, is indifferent. For F 6= I, the
weights adaptation can be done in the time-domain (switch
position 1.) or in the transformed domain (switch position
2.). (Modified from [5]).

• F ∈ CN×N - Linear transform operator (e.g. discrete-
Fourier transform (DFT) matrix) such that F ·FH = I;

• G - Symbol that represents a windowing constraint of
the output signal, error or weights;

• xk, yk,wk ∈ (R,C)L×1 - Vectors sequence, respec-
tively, of the input, output blocks and filter weights;

• Xk ∈ (R,C)N×M - Time domain input data matrix;

• Xk, Y k, W k ∈ CN×1, ... - Frequency domain quan-
tity: input, output, filter weights vectors etc.

Said MF the filter length, for the so called frequency domain
adaptive filters (FDAF) algorithms, the block length is gener-
ally chosen as L =MF , the FDAF buffer composition choice
commonly used is such that L = M ≡ MF . To operate a
correct domain transformation, for example with a DFT/FFT,
and in particular for the filter output calculation, it is neces-
sary to choose a number of FFT points N ≥ M + L − 1. A
usual choice for FDAF class, is N = L+M .

In the case of very long filters (with thousands of coeffi-
cients), very common in AF’s audio applications, the block
length turns out to be necessarily L � MF and, in this case,

for the transform domain filter implementation, it is neces-
sary to perform a impulse response partition. This partition
enables the AF implementation with more contained laten-
cies, and a very common choice is to consider P partitions of
length M , such that the filter length is equal to the product
MF = P ·M , and a block length such that M = p · L with
p = 1, 2, . . . , P integer [16]-[19].

In the extreme case, where L = 1 (i.e. a block of one
sample length), the algorithm is defined as transform domain
adaptive filters (TDAF). The input window, in this context
said sliding window, is simply defined by the filter delay-line
length. In this extreme case, the operator F performs a linear
transformation just to orthogonalize the input signal so as to
facilitate the uniform convergence of the adaptive algorithm.
The domain change can be of various nature. Although, in
theory, the operator F can be any orthonormal transformation,
it is usual to choose transformations that allow, in addition to
the input signal orthogonalization, a computational complex-
ity reduction. Choices rather common are the DFT (imple-
mented as FFT) the DCT or other transformations tending to
input signal orthogonalization.

Note that for L = 1, the transformation F can be replaced
by a suitably designed parallel filters bank, uniformly or not
non-uniformly spaced [20]. In addition, to obtain a computa-
tional cost reduction, it is possible to perform a signal deci-
mation/interpolation. The AFs class is in this case called sub-
band adaptive filter (SAF) (see for example [21]).

3. FREQUENCY DOMAIN BLOCK ADAPTIVE
FILTERING

The subject of frequency domain adaptive filtering is a very
broad topic, which presents many variations and specializa-
tions, evidenced by the numerous contributions, including re-
cent ones, in the scientific literature (see for example [6]-
[21]). These algorithms have a high usability in applications
in which the filter length is very high and is also required high
computational efficiency.

In this section are presented some frequency domain al-
gorithms, such as FDAF, which has a recursive formulation
similar to BLMS. Also known in the literature as fast LMS
(FLMS), were presented for the first time by Ferrara in [8]
and, independently, by Clark, Mitra and Parker in [9].

In the time domain block LMS (BLMS) the learning rule
can be written as ∇Jk =

∑L−1
i=0 e

?[kL + i]xkL+i, i.e. the
gradient estimate is determined by the cross-correlation be-
tween the data vector xk and the error ek. Thus the time do-
main weights update equation can be formulated as wk+1 =
wk +

µB

L XH
k e?k. So, transforming this rule in the frequency

domain, (se for example [13]), in a compact and general no-
tation we get

W k+1 =W k +G[µk �X?
k �Ek] (1)

where [·]H is the Hermitian operator, the symbol� represents

Fig. 7.9 Block adaptive
filtering algorithms. a)
Input signal buffer com-
position mechanism of
overlap-save (OLS) convo-
lution (see §4.6). b) Gen-
eral framework for block
algorithms in time and
transformed domain by
the operator F. For F = I,
the algorithm is entirely in
the time domain and the
switches 1. or 2. position,
is indifferent. For F 6= I,
the weights adaptation
can be done in the time-
domain (switch position
1.) or in the transformed
domain (switch position
2.). (Modified from [11]).

In particular, in this section are presented some known algorithms such as FDAF,
which has a recursive formulation similar to BLMS. Also known in the literature as fast
LMS (FLMS), were presented for the first time by Ferrara in [17] and, independently,
by Clark, Mitra and Parker in [18].

A general representation framework for block algorithms described in this chapter,
is reported in Fig. 7.9 that shows a possible mechanism example, for buffer composi-
tion.

• F ∈ CN×N - Linear transform operator (e.g. discrete-Fourier transform (DFT)
matrix) such that F ·FH = I;

• G - Symbol that represents a windowing constraint of the output signal, error or
weights;

356 7 Adaptive Audio Processing

• xk, yk,wk ∈ RL×1 - Time-domain vectors sequence, respectively, of the input,
output blocks and filter weights;

• Xk ∈ RN×M - Time-domain input data matrix;
• Xk, Y k, W k ∈ CN×1, ... - Frequency domain quantity: input, output, filter

weights vectors etc.
Again with reference to Fig. 7.9, the output and error signal windowing constraint
G, and that of the weights (the latter not shown in the figure) is necessary for the
proper implementation of the inverse FFT. Note, also, the presence of the switches
with position 1. and 2. This presence indicates that the adaptive filtering algorithm
can be implemented in mixed mode: the output calculation in the transformed domain
and weights update in time domain. For F = I, the algorithm operates entirely in the
time domain and, as the reader can observe from the figure, in this case the switches
positions are indifferent.

7.5.1 Introduction to FDAF
The FDAF has a recursive formulation similar to block LMS in §7.3.4. In the time
domain BLMS learning rule is ∇Jk = XT

k ek, the gradient estimate is determined
by the cross-correlation between the data vector xk and the error e[k]. Thus the
weight update equation can be formulated as wk+1 = wk + µB

L XT
k ek. Transforming

this rule in the frequency domain, as suggested in [23], and using a compact and
general notation [11], we obtain

W k+1 = W k+G
[
µk�XH

k �Ek

]
(7.69)

where [·]H is the Hermitian operator, the symbol � represents the pointwise prod-
uct (i.e. the time-domain matrix-vector product XT

k ek that implements the cross-
correlation is transformed by a more simple pointwise vector product XH

k �Ek in
the frequency domain), the vector µk = [µk(0), µk(1), ..., µk(N − 1)], contains the
learning rates or step size that can be of different value for each frequency bin. The
matrix G represents the windowing or gradient constraint, necessary to impose the
linearity of the correlation in the gradient calculation that can be interpreted as a par-
ticular signal pre-windowing in the time domain. The matrix G is inserted in learning
rule only in order to generalize the FDAF formalism.

In the class of the FDAF algorithms the error calculation can be performed directly
in the time or frequency domain. In the case where the error is calculated in frequency
domain, the gradient constraint can be chosen unitary G = I and the FDAF is said
unconstrained frequency domain adaptive filter (UFDAF).

7.5.2 Frequency-bin step size normalization
One of the main advantages of the frequency approach is that the adaptation equa-
tions (7.69) are decoupled, i.e. in the frequency domain, the convergence of each filter
coefficient is not dependent from the others. It follows that to speed-up the conver-
gence rate such that we can obtain a uniform convergence, it is possible to define a

7.5 Frequency Domain Adaptive Filtering 357

simple power normalization rule. Indicating with Pk(m) the estimation power of the
m-th frequency bin and, let µ a suitable predetermined scalar parameter, the step-size
can be chosen independently for each frequency bin m, proportional to the inverse of
its power, i.e.

µk(m) = µ/[α+Pk(m)], m= 0, . . . , N −1 (7.70)

where the parameter 0< α� 1, avoid the zero-division. So, the power normalization
rule allows to accelerate the slower convergence modes. Obviously, in the case of white
and stationary input processes, the powers are identical for all frequencies bin and
we have µk = µI. Moreover, to avoid significant step-size discontinuity that could
destabilize the adaptation, as suggested by some authors (see, for example, [20]), it is
appropriate to estimate m-th power frequency bin with a one-pole lowpass smoothing
filter usually implemented by the following finite difference equation

Pk(m) = λPk−1(m) + (1−λ)|Xk(m)|2 (7.71)

where λ represents a forgetting parameter and |Xk(m)|2 the m-th measured energy
bin.

7.5.3 Overlap save FDAF
The overlap-save FDAF (OS-FDAF) algorithm, is the frequency domain equivalent
of the BLMS, it has the same convergence characteristics in terms of speed, stability,
misalignment, and the algorithm converges, in average, to the optimum Wiener so-
lution (see, for example, [23]). The possibility of choosing learning rates different for
each frequency bin, as with the power normalization in Eqn. (7.71), allows a conver-
gence speed improvement without, however, improving the reachable minimum MSE.
Compared to BLMS, the OS-FDAF allows the dual advantage of having reduced
complexity and, exploiting the step-size normalization an higher convergence speed.

1kW

kW

Frequency
domain
update

M
old kx x

 IFFT

FFT

FFT kX kY ˆ kykx

kμ

Delay

[] IFFT

FFT
ˆ ke

Gradient
constraint

ˆ
kd

kEH
kX

Append
null block

Complex
conjugate

1z

 L

k

 y

Force to zero

ˆM k0 e

ˆ[] M
k LJ 0

Fˆ
kJ

Filter length :

Block length :

FFT points

M

L

N = M L

L M
Samples overlap

 new with old
'Save' : select
last block

Fig. 7.10 Overlap-save
FDAF (OS-FDAF) al-
gorithm structure, also
known as fast block LMS
(FBLMS). The FFT is
calculated for each sig-
nal block for which the
algorithm introduces a sys-
tematic delay of (at least)
L samples. In total, the
OS-FDAF requires five
N -points FFT calculation.
(Modified from [11]).

In implementation, the constraint matrix G does not appear explicitly (i.e., the
matrix can not be pre-calculated) is used instead, the FFT. In fact, with its explicit

358 7 Adaptive Audio Processing

determination, we would lose the computational cost reduction inherent in the FFT
calculation.

Let ek,dk ∈ RL×1 the time domain error and desired output of the k-th samples
block, from the implementation point of view, the algorithm can be realized as follows.
1. Initialization W 0 = 0, P0(m) = δm ∀m
2. for k = 0,1, . . . { for each L-samples block

xk← [x(M)
old x(L)

new] buffer composition rule
Xk = FFT [xk] fast Fourier transform

yk = [IFFT(Xk�W k)]bLc convolution
Ek = FFT([0 dk−yk]) frq. domain error

Pk(m) = λPk−1(m) +(1−λ) |Xk(m)|2 , ∀m

µk =
[
P−1
k (0) P−1

k (1) · · · P−1
k (N −1)

]T
∇J = µk�X?

k�Ek stochastic gradient

∇J = FFT
([

IFFT[∇J]dMe
0L

])
grad. constraint

W k+1 = W k+∇J frq. domain up-date rule

}.

In Fig. 7.11 there is a comparison between three of the most used algorithms in the
audio scenario, the NLMS, the APA and OS-FDAF. To evaluate the averaged learning
curve The experiment is repeated 10 times so that the total number of processed
samples is equal to 106.

0 1 2 3 4 5 6 7 8 9 10

Samples 104

-50

-40

-30

-20

-10

0

10

Averaged Learning Curves nRun=10 b=0.95

NLMS
APA
OSFDAF
MSE bound

 AF performance, M=1024, nOfSamples=106

 NLMS Elapsed time: 12.504 [s]
 APA Elapsed time: 103.231 [s]
 OSFDAF Elapsed time: 0.233 [s]
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
Bias vs variance
Alg: NLMS <Var> = 1.05e‐03 <Bias> = 9.39e‐06
Alg: APA <Var> = 2.68e‐08 <Bias> = 3.26e‐07
Alg: OSFDAF <Var> = 7.35e‐08 <Bias> = 4.60e‐08

White noise b=0 Colored noise b=0.95

Fig. 7.11 Adaptive filter
comparison performance
in term of convergence
performance, bias and
variance of the estimation
and computation time
(averaged over 10 runs).
The target filter length
is M = 1024 randomly
generated, and the number
of signal samples is equal to
N = 105. The adaptation
steps-size are adjusted
to achieve the best and
identical performance in
the case of the white input.
The first half of the signal
is WGN with unit variance,
while the second half is a
narrow-band colored noise
generated with Eqn. (7.36)
for b= 0.95.

7.6 Direct Acoustic Modeling 359

From the learning curve we can observe that the convergence characteristics of the
OS-FDFA are those typical of a second order algorithm, in fact the performances are
similar in the case of white and colored input. However, the processing time (using a
MATLAB program run on a laptop) of the OS-FDAF is 50 times faster than the LMS
and more than 400 times faster than the APA.

7.5.4 Partitioned OS-FDAF
As for fast frequency domain FIR filtering (see §4.6.2.1 and §4.6.2.2), an alternative
implementation of FDAF suitable to decrease of the block length is to partition the
filter impulse response in P subfilters [24], [25], [60]-[62].

Let us consider the implementation of a filter of length equal to MF = P ·M , the
convolution is implemented in P smaller convolutions, each of these implemented
in the frequency domain. With this type of implementation, the frequency domain
approach advantages are associated with a significant latency reduction. The PFDAF
algorithm structure is shown in Fig. 7.12.

l
kW

kμ

kElH

kX

1z

IFFT[]
FFT

Ml
k

L

 0

W

1
l

kW

FFT
kx

M
old
L
k

x

x

- points FFT

 = 2

N

N M

0
kX

IFFT kY ˆ ky
 L

k

 y

ˆ
M k0 e

FFT

ˆ
kd

1 0
1k kX X

1 0
1

P
k k P

 X X

2 0
2k kX X

1z

0
kW

1z

1z

1
kW

1P
k
W

NN

N
0,..., 1l P

LL

Fig. 7.12 Structure of
the PFDAF algorithm,
also known as PFBLMS,
for L=M . (Modified from
[11]).

7.6 Direct Acoustic Modeling

The applicability of adaptive filtering methods to audio problems is very wide. How-
ever, the various AF applications for DASP can be summarized in the following tasks:

1. Direct modeling;
2. Inverse modeling.

7.6.1 Room Impulse Response Estimation
The quality of a listening room depends on the characteristics of its reverb. Therefore,
Room Impulse Response (RIR) estimation is of great importance in acoustic modeling.

360 7 Adaptive Audio Processing

In general, the estimation of the impulse response can be performed with the
scheme indicated in Fig. 3.10. The environment is excited with a broadband signal, as
the PRBS (see Appendix A), usually radiated by an array of loudspeakers placed in
a regular dodecahedron-shaped encloser, in order to approximate an isotropic source.
An omnidirectional microphone acquires the signal and its reflections.

On the contrary, in online estimation using the signal currently on the speaker, e.g.
voice music, the probably non-Gaussian statistical characteristics of the excitation
signal should be taken into account. In these cases, a widely used algorithm is the
APA or a variant of it, which allows scaling of the Hessian information.

7.6.2 Acoustic Echo Cancellation
In the modern hands-free voice over IP (VoiIP) systems, the echo is generated by the
coupling between the loudspeaker and the microphone. The problem of acoustic echo
can be easily explained by considering the typical teleconference scenario shown in
Fig. 7.13. The microphone, as well as capture the voice of the subject, also acquires
the signal from the loudspeaker which, together with walls reflections, it is be returned
to the sender (far-end side). So, at the sender side there will have a return echo that
can seriously affect the intelligibility of communication.

Transmission apparatus

Fig. 7.13 Acoustic echo generation in teleconference scenario. The microphone, in addition to
capturing the voice of the speaker, also acquires the signal coming from the loudspeaker and the
various reflections due to the walls of the room (reverberation). (Courtesy of [11]).

The prevention of the echo return is therefore of central importance for the quality
of the transmission itself and can be performed in various modes. In specific video
conference rooms, as in the television studios where it is possible (or desirable) to
intervene acoustically, we can use unidirectional microphones or microphone array
beam oriented towards the talker (or wireless body or headworn mics, etc.), appro-
priately position the loudspeaker and treat the room with sound absorbing material
in order to make it the most anechoic as is possible.

It is evident that in most real world situations, in living-room, offices, cars, etc.,
those remedies, which however do not guarantee the complete absence of echo, are
in practice impossible. In most practical cases a sophisticated acoustic treatment is
unthinkable, in addition, the use of directional microphones together with the correct
positioning of loudspeakers strongly binds the speaker to assume predetermined fixed
positions.

7.6 Direct Acoustic Modeling 361

The echo cancellation can be performed with an AF, placed in parallel to the
respective transmission sides, said adaptive echo canceller (AEC). With reference to
Fig. 7.14 the far-end signal x[n] transmitted by the other side is filtered and subtracted
from the microphone signal indicated as d[n]. The purpose of the adaptive filter and
to model the acoustic path between the loudspeaker and the microphone in order to
subtract from the signal to be transmitted d[n], the far-end signal x[n] together with
all the reflections due to the walls of the room.

Fig. 7.14 The acoustic
path between the loud-
speaker and microphone
is modelad by room im-
pulse response (RIR) h.
(Courtesy of [11]).

 arg min J
[]e n

[]y n

[]d n

74dB(A)

55 68dB(A)

[]x n

h
Loudspeaker - mic.
acoustic path

wAF

Remark 7.16. Note that, although conceptually simple, acoustic echo cancellation
reveals a problem of a certain complexity. A typical office room reverberation is of the
order of hundreds of ms. For example, considering a sampling frequency of 16kHz and
a reverberation time of 100-200ms, for the cancellation of the echo effect, the filter
should have a length of not less than 1600-3200 coefficients (taps). Moreover, if the
speaker is not in a fixed position but moves relative to the microphone and the walls,
the acoustic configuration changes continuously. So, the adaptive filter must perform a
real time tracking of acoustics variant of the system and, in these cases, the efficiency
of the adaptation algorithm, in terms of convergence speed, plays a fundamental role.

Other aspects of current research on acoustic echo cancellation, concern the extension
to multi-channel case, i.e, when there are multiple loudspeakers and/or more micro-
phones. In this context, we think that the inclusion of the positional audio paradigm,
can be used in order to make video-conference a more natural communication sys-
tems (augmented reality). In this class of systems, at the position of the talker on
the video, also corresponds a positional acoustic model. To have an adequate acoustic
spatiality are necessary, as in the simple stereo case, at least two microphones and
two loudspeakers appropriately driven.

The acoustic transduction devices, such as microphones and especially loudspeak-
ers, are by their nature (sometimes strongly) nonlinear and, for this reason, the adap-
tive acoustic systems that use such devices should take into account of such nonlinear-
ity. In the case of echo cancellation and even, as we shall see in the next section, in the
active noise cancellation is almost always considered the hypothesis of linear acoustic
transducer. The treatment of nonlinearity, in particular those of the loudspeaker, is
a very promising active area of current research. Such nonlinearity, are dynamic, of
difficult modeling and, in addition, negligible only in high cost devices.

362 7 Adaptive Audio Processing

7.6.3 MIMO Extentions

7.6.4 Limite delle tecniche adattative in campo audio: la
funzione di coerenza

7.7 Inverse Acoustic Modeling

Application : room equalization, cross-talk cancellation

7.7.1 Delayed Learning LMS Algorithms

7.7.2 Filtered-X LMS Algorithm
Let S(z) an unknown linear system, also called secondary path, the problem of pre-
distortion consists in the estimation of its inverse model W (z), also called controller,
when it is located upstream with respect to the secondary path. In the case of linear
transfer function the estimation of predistorter can be solved is similar way of the
equalization problem [6].

Considering the diagram of Fig. 7.15-a), we want to estimate the controller trans-
fer function such that W (z)→ 1/S(z), for the commutative property we have that
W (z)S(z) = S(z)W (z) = 1. In the case where the transfer function S(z) is a priori
known, for the estimate of W (z) is sufficient to use the scheme of Fig. 7.15-b), and in
the normal operation re commute the two transfer functions.

[] []d n s n D

[]y n[]s n

[]e n

()S z

 min ()
M

J
w

w

()W z
[]x n

Dz

ˆ[]x n

[]e n

[] []d n s n D

[]y n[]s n

[]e n

()S z

 min ()
M

J
w

w

()W z
[]x n

Dz

[]e n

a)

b)

Fig. 7.15 Inverse modeling of secondary path S(z). In the case of linear transfer function the
upstream estimation schemes can be solved by switching the two transfer functions. a) inverse
modeling by upstream predistortion scheme; b) inverse modeling by downstream equalization
scheme.

Usually the transfer function S(z) is unknown, and it is necessary to proceed to an
estimate Ŝ(z). When the secondary path is easy accessible, and presumably stationary,
its estimate can be made before the adaptation process (or calibration process). In this
case, the estimates of W (z) can be made, by LMS like algorithms, with the diagram
in Fig. 7.15-b), using the secondary path estimation Ŝ(z).

In many practical cases, the secondary path is not simply accessible and also it
can be a nonstationary system. So, for its estimate we may proceed with an on-line

7.7 Inverse Acoustic Modeling 363

approach as, for example, that in the scheme shown in Fig. 7.16, denoted as filtered-
x least mean squares (FX-LMS). In FX-LMS the input signal is filtered with the
estimated Ŝ(z) (from which the name "filtered-x"), in this way it is produced the
signal x̂[n] such that the adaptation of W (z) can be traced to the switched scheme
illustrated in Fig. 7.15-b). Thus in FX-LMS the on-line learning rule is

wnew = wold+µx̂e[n].

Fig. 7.16 Block diagrams
of FX-LMS algorithm for
S(z) system compensation
by predistortion. The filter
W (z) is adapted consider-
ing the input signal x̂[n]
and the output error e[n].

()W z

[]d n

[]y n[]s n

[]e n

[]x n

 min ()J w

()S z

ˆ()S z

 min ()J w

()W z

1[]e n

ˆ[]x n

ˆ()S z

()P z

[]d n

[]y n[]s n

[]e n

[]x n

 min ()J w

()S z

ˆ()S z

 min ()J w

()W z

1[]e n

ˆ[]x n

ˆ()S z

Dz

Example 7.1. Below is a MATLAB code that implements the FX-LMS algorithm, in
the case that we proceed to the on-line estimation both of the secondary path and
the controller.

The adaptive controllerW (z) is implemented with the structure FXLMS_ W (see the
code). Moreover, its filter’s weights are initialized as w = δ[0]. After the creation of
the filter’s structure as FXLMS_ W = create_ STRC_ LMS_ AF(Mw, 0.001); the first
element of the vector w is forced as w[1] = 1, i.e. FXLMS_ W.w(1) = 1.

With this initial condition (I.C.), the filter output W (z) is identical to its input.
For which if the block (see the parameter BlkSize in the MATLAB code) is long
enough, in the first iteration the secondary path S(z) is fed with white noise and this
facilitates the estimation procedure of the S(z) (see the line code [LMS_ s0] = AF_
STRC_ LMS_ F_ B(LMS_ s0, BlkSize, x, y(nn));).

The Fig. 7.17, shows the results of the FX-LMS algorithm in the case in which the
secondary path is random modeled as

s0[n] = e−0.1n ·η[n], n= 0, 1, ... Ms0−1

where η[n] is WGN.
In the figure we can observe that the error signal e[n] tend to zero. Moreover, note

that h[n] is the convolution between s[n] and w[n] and, as we can see from the figure,
it is very close to a translate unitary impulse such that H(z)∼ z−D.

364 7 Adaptive Audio Processing

Fig. 7.17 Results of the
FX-LMS algorithm. s[n]
is the impulse response of
secondary path, w[n] is
the impulse response of
estimated controller and
h[n] = s[n]∗w[n]∼ δ[n−D]
(in the simulation D= 40).

0 10 20 30 40 50 60
-1

-0.5

0

0.5

1
Secondary path impulse response

Time Index

s(
n)

0 10 20 30 40 50 60 70
-1

-0.5

0

0.5

1
Controller impulse response

Time Index

w
(n

)

0 20 40 60 80 100 120

0

0.5

1
Overall impulse response

Time Index

h(
n)

0 0.5 1 1.5 2

x 10
4

-10

-8

-6

-4

-2

0

2

4

6

8

10
Linearization by predistortion of a Random FdT

Samples

S
ig

na
l V

al
ue

Non compensated output

Correction Signal
Output Error Signal

0 0.5 1 1.5 2

x 10
4

-30

-20

-10

0

10
Smoothed Mean Squares Error

Samples

20
*l

og
10

(a
bs

(e
))

MSE

MSE bound

7.7.3 Active Noise Control by Filtered-X LMS Algorithm
The active noise cancellation or active noise control (ANC) consists in producing
of an acoustic wave, said antinoise, in phase opposition with respect to the wave
generated by the noise source. This wave has the objective of creating of a silence
zone in a given region of space [26].

[] []d n s n D

[]y n[]s n

[]e n

()S z

 min ()
M

J
w

w

()W z
[]x n

Dz

ˆ[]x n

[]e n

[] []d n s n D

[]y n[]s n

[]e n

()S z

 min ()
M

J
w

w

()W z
[]x n

Dz

[]e n

)a

)b

Noise
source

[]s n
()W z Silent

area

Adaptive
algorithm

Active noise canceler

Reference
microphone

[]y n

[] [] []e n d n y n

[]d n

Residual
error

[]d n

[]y n[]s n

[]e n

[]x n

 min ()J w

()S z

ˆ()S z

 min ()J w

()W z

1[]e n

ˆ[]x n

ˆ()S z

()P z

Secondary
path ()S z

Primary
path ()P z

ˆ[]x n

Primary
source

Secondary
source
" "antinoise

Error
microphone

Fig. 7.18 Diagram of the operating principle of an active noise canceler (ANC). The loudspeaker
makes a wave in phase opposition with respect to the noise at the point where is located the error
microphone. The reference microphone should be placed as close as possible to the acoustic source
of noise.

7.7 Inverse Acoustic Modeling 365

Referring to the operating principle that is shown in the Fig. 7.18, the first task in
ANC is to estimate the impulse response of the secondary propagation path denoted as
S(z). This step is usually performed prior to noise control using a synthetic random
signal, as for example WGN or pseudo random binary sequences5 (PRBS), played
through the loudspeaker while the unwanted noise is not present [26]. The transfer
function S(z) is the model between the loudspeaker, that produce the anti-noise, and
error microphone. Note that the estimate of the secondary path must necessarily be
made when the primary noise source is off. Unlike the generic predistorter, in the case
of the ANC this stage can not be done online. In addition, always referring to Fig.
7.18, the transfer function P (z) is the model between the noise source and the error
microphone and represents the primary acoustic path.

It is easy to verify that the schematization the ANC operating principle shown in
the Fig. 7.18 is that reported in Fig. 7.19. The ANC scheme is very similar to the
scheme of the predistorter of Fig. 7.16. The only difference is that, in ANC case, P (z)
is an acoustic transfer function (ATF) that model the distance and the riverberation
between the primary acoustic noise and the error microphone. Thus, in order to create
a silent area, we need to determine a controller W (z) that has a transfer function
such that at the signal at the error microphone is minimized, in other word such that
W (z)S(z)∼ P (z).

Fig. 7.19 Block diagrams
of FxLMS algorithm for
for active noise control.
The transfer function P (z)
is the primary acoustic
propagation path. In the
ANC simulation, the noise
η1(n) taking account of
any error of the secondary
path estimates, while η2(n)
is the not cancellable noise.

[] []d n s n D

[]y n[]s n

[]e n

()S z

 min ()
M

J
w

w

()W z
[]x n

Dz

ˆ[]x n

[]e n

[] []d n s n D

[]y n[]s n

[]e n

()S z

 min ()
M

J
w

w

()W z
[]x n

Dz

[]e n

)a

)b

Noise
source

[]s n
()W z Silent

area

Adaptive
algorithm

Active noise canceler

Reference
microphone

[]y n

[] [] []e n d n y n

[]d n

Residual
error

[]d n

[]y n[]s n

[]e n

[]x n

 min ()J w

()S z

ˆ()S z

 min ()J w

()W z

1[]e n

ˆ[]x n

ˆ()S z

()P z

Secondary
path ()S z

Primary
path ()P z

ˆ[]x n

Primary
source

Secondary
source
" "antinoise

Error
microphone

1[]n

2[]n

Example 7.2. In ANC simulation systems, in order the generate the primary acoustic
propagation, we may consider the frequency range 50-3000 [Hz], and that for the filter
length we may consider an impulse response of duration in the range 0.1 - 0.3 [s]. For
example, considering a duration of 0.1 [s], for a sampling frequency of 8 [kHz], the
impulse response has length equal to 800 samples. In addition, note in the secondary
path we must also consider the loudspeaker’s frequency response that, in our tests, was
5 A pseudo random binary sequence is a 2-level signal (i.e. binary) that has statistical behavior
similar to a truly-random sequence. It is used in identification techniques in that it has a constant
amplitude and, therefore, can work in a zone in which the system the to be identified and the
device for generating the excitation source (e.g. a loudspeaker), are linear.

366 7 Adaptive Audio Processing

chosen in the range 30 - 1000 [Hz]. In the simulation, the estimation of the secondary
path has been made prior to the noise control phase, using a WGN signla with a
duration of 2 sec.

In the tests, to simulate the noise source, it has been considered as a sum of
sinusoids with random frequency, generated in the range between 50 and 720 [Hz].

The results of the simulation is reported in Fig. 7.20.

Fig. 7.20 Active noise
control by FxLMS algo-
rithm. Simulation results.

0 0.02 0.04 0.06 0.08 0.1
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3
Secondary path impulse response

Time [s]

s0
(n

)

Original

Estimated

0 0.05 0.1 0.15 0.2
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3
Primary path impulse response

Time [s]

p0
(n

)

0 5 10 15
-3

-2

-1

0

1

2

3
Active Noise Control of a Random Noise Signal

Time [s]

S
ig

na
l V

al
ue

s

Noise

Anti-Noise
Mic. Error Signal

0 1000 2000 3000 4000

-20

-10

0

10

20

Noise Power Spectral Density

Frequency [Hz]

P
sd

 [
dB

]

Noise PSD

Err. Mic. PSD

7.7.4 ANC by Adjoint LMS Algorithm
The adjoint LMS (AD-LMS) algorithm, represents an alternative way of FX-LMS
algorithm for the controller adaptation in predistortion and ANC systems. Referring
to Fig. 7.21 the AD-LMS can be derived by considering three steps.

1. As shown in Fig. 7.21-b) we must switch the adaptation block LMS and the block
of the secondary path estimation S(z). In order for this operation to be consistent,
as shown in Fig.s 7.22-a) and b), the transfer function path Ŝ(z) become non
causal as Ŝ(z)→ Ŝ(z−1), i.e. in the transfer function definition the delays are
transformed in anticipation elements z−1→ z+1. This means that the signal ê[n]
is dependent on the future samples of the error output e[n+k].

2. In order to causalize the transfer function Ŝ(z−1), it is sufficient to appropriately
delay, the output error signal. This means that Ŝ(z−1)→ z−DŜ(z−1), where D
is a suitable delay

7.7 Inverse Acoustic Modeling 367

3. Finally, for the correct LMS adaptation the input and the error signals must be
perfectly aligned. Thus, as shown in Fig. 7.21-c), is also necessary to delay, of a
factor D, the input signal of the LMS block.

LMS
[]d n

[]y n[]x n

[]e n

ˆ[]x n

w

1ˆ qC

1qC

LMS
[]d n

[]e n

ˆ[] ([])qe n C e n

1

([])qC y n

[]y n[]x n
w 1qC

1

([])qC y n

ˆ qC

LMS
[]d n

[]x n

[]e n

ˆ[]x n

w

ˆ()S z

()S z

LMS
[]d n

[]e n

[]y n []x n
w

[]y n
()S z

1()S z LMS
[]d n

[]e n

[]x n
w

[]y n
()S z

1()Dz S z

Dz

)a)b)c[̂]e n [̂]e n

ˆ[]x n

FX-LMS Non-causal reversed FX-LMS
Adjoint LMS

Causalized reversed FX-LMS

ˆ[]x n

0ŝ

[1]x n [2]x n

[1]sx n M

1z
[]x n

1

()

()

S z

S z

 z
ˆ[]e n

[]e n

[1]e n

1z1z

z z

1̂s 2ŝ 1ˆ
sMs

0ŝ 1̂s 2ŝ 1ˆ
sMs

ˆ[]e n

0ŝ

[1]e n [2]e n

[1]se n M

1z
[]e n

1z1z

1̂s 2ŝ 1ˆ
sMs

1

1

()

()sM

S z

z S z

)a

)b

)c

Fig. 7.21 The adjoint LMS AD-LMS algorithm derivation.

LMS
[]d n

[]y n[]x n

[]e n

ˆ[]x n

w

1ˆ qC

1qC

LMS
[]d n

[]e n

ˆ[] ([])qe n C e n

1

([])qC y n

[]y n[]x n
w 1qC

1

([])qC y n

ˆ qC

LMS
[]d n

[]x n

[]e n

ˆ[]x n

w

ˆ()S z

()S z

LMS
[]d n

[]e n

[]y n []x n
w

[]y n
()S z

1()S z LMS
[]d n

[]e n

[]x n
w

[]y n
()S z

1()Dz S z

Dz

)a)b)c[̂]e n [̂]e n

ˆ[]x n

FX-LMS Non-causal reversed FX-LMS
Adjoint LMS

Causalized reversed FX-LMS

ˆ[]x n

0ŝ

[1]x n [2]x n

[1]sx n M

1z
[]x n

()S z

 z
ˆ[]e n 1 [1]

sM ss e n M

1z1z

z z

1̂s 2ŝ 1ˆ
sMs

ˆ[]e n

0ŝ

[1]e n [2]e n

[1]se n M

1z
[]e n

1z1z

1̂s 2ŝ 1ˆ
sMs

)a

)b

)c
sMz

[]e n

Adjoint graph of ()S z

ˆ[]e n

0 [1]s e n

0ŝ1ˆ
sMs

)d []e n

2ˆ
sMs 3ˆ

sMs

1z 1z1z

0ŝ 1̂s 2ŝ 1ˆ
sMs

[]se n M

[]e n

1()S z

1()sMz S z

1()sMz S z

Fig. 7.22 The signal flow graph (SFG) of the error signal filtered by secondary path transfer func-
tion. a) SFG of S(z); b) SFG of non causal S(z−1). c) Causalized SFG z−MsS(z−1). d) Equivalent
causalized SFG, implemented with only the delay elements, but with the filter coefficients arranged
in reversed order.

Remark 7.17. By a simple visual inspection of Fig. 7.22-c), we can observe that the
SFG of the transfer function in the dotted box corresponds exactly to the so-called

368 7 Adaptive Audio Processing

adjoint graph or adjoint network6 of the SFG of S(z) (not reported for brevity). The
name of the algorithm adjoint LMS, originally developed in [27], is derived from this
property.

In AD-LMS, the LMS update is performed considering a filtered version of the delayed
error signal. Let ŝ = [ŝ0 ŝ1 · · · ŝMs−1]T , be the estimated impulse response of the
secondary path, in order to have a correct LMS update, the transfer function Ŝ(z−1),
in order to compensate the anticipation elements, is fed by a delayed error signal
e[n−D]. In other word, we have that

Ê(z)
E(z) = z−DŜ(z−1).

More formally, for D =Ms−1, the filter error transfer function can be written as

z−Ms+1Ŝ(z−1) = z−Ms+1
(
ŝ0 + ŝ1z

1 + · · ·+ ŝMs−1z
Ms−1

)
= ŝ0z

−Ms+1 + ŝ1z
Ms + · · ·+ ŝMs−1z

0

= ŝMs−1 + ŝMs−2z
−1 + · · ·+ ŝ0z

−Ms+1.

Note that the last expression corresponds to the equivalent causalized SFG version of
z−Ms+1S(z−1), implemented with only the delay elements, and with the coefficients
arranged in reverse order (see Fig. 7.22-d)). Thus, in the time domain we have that
the filtered error ê[n] should be evaluated as

ê[n] =
Ms−1∑
k=0

ŝ[Ms−k]e[n−k].

Moreover, in order to keep the filtered version of the error aligned with the signal
that is used for the LMS update, the input signal must by delayed by a delay element
z−Ms+1. The resulting algorithm is illustrated in Fig. 7.23. The corresponding AD-
LMS adaptation rule can be written as

wn = wn−1 +µxn−Ms ê[n]. (7.72)

Example 7.3. Below is reported the MATLAB code of the AD-LMS algorithm for
the same problem previously presented in Example 7.2. The simulation results are
reported in Fig. 7.24.

6 Given a discrete-time circuit defined by a graph G, we define the adjoint network a circuit whose
graph is determined by G with the following modifications: 1) the paths verses are reversed; 2)
junction nodes are switched with sum nodes; 3) delay elements are replaced with anticipation
elements.

7.7 Inverse Acoustic Modeling 369

Fig. 7.23 Block diagrams
of the adjoint LMS al-
gorithm for active noise
control.

Noise
source

[]s n
()W z Silent

area

Adaptive
algorithm

Active noise canceler

Reference
microphone

[]y n

[] [] []e n d n y n

[]d n

Residual
error

[]d n

[]y n[]s n

[]e n

[]x n

 min ()J w

()S z

ˆ()S z

 min ()J w

()W z

1[]e n

ˆ[]x n

ˆ()S z

()P z

Secondary
path ()S z

Primary
path ()P z

ˆ[]x n

Primary
source

Secondary
source
" "antinoise

Error
microphone

1[]n

2[]n

[]d n

[]y n[]s n

ˆ[]e n

[]x n
()S z

 min ()J w

()W z

[]s n D

Dz

()P z

2[]n

1ˆ()Dz S z []e n

Fig. 7.24 Active noise
control by AD-LMS algo-
rithm. Simulation results.

0 0.02 0.04 0.06 0.08 0.1
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3
Secondary path impulse response

Time [s]

s0
(n

)

Original

Estimated

0 5 10 15
-22

-20

-18

-16

-14

-12

-10

-8

-6
Smooth Mean Squares Error

Time [s]

20
*l

og
10

(a
bs

(e
))

MSE

MSE bound

0 5 10 15
-3

-2

-1

0

1

2

3
Active Noise Control of a Random Noise Signal

Time [s]
S

ig
na

l V
al

ue
s

Noise

Anti-Noise
Mic. Error Signal

0 1000 2000 3000 4000

-20

-10

0

10

20

Noise Power Spectral Density

Frequency [Hz]

P
sd

 [
dB

]

Noise PSD

Err. Mic. PSD

7.7.5 Crosstalk Cancellation

370 7 Adaptive Audio Processing

References

1. N. Wiener, “Extrapolation, Interpolation and Smoothing of Stationary Time Series, with
Engineering Applications”, New York, Wiley, 1949.

2. N. Wiener and E. Hopf, “On a class of singular integral equations,” Proc. Prussian Acad.,
Math.-Phys. Ser., p. 696, 1931.

3. T. Kailath, “A View of Three Decades of Linear Filtering Theory,” IEEE Trans. On Informa-
tion Theory. Vol. IT-20, No 2, pp 146-181, March 1974.

4. G. U. Yule, “On a method of investigating periodicities in disturbed series, with special
reference to wolfer’s sunspot numbers,” Phil. Trans. Roy. Soc., 226-A:267–298, 1927.

5. B. Widrow, M.E. Hoff, “Adaptive switching circuits,” IRE WESCON, Conv. Rec., pt. 4, pp.
96-104, 1960.

6. B. Widrow, S.D. Stearns, “Adaptive Signal Processing”, Prentice Hall ed., 1985.
7. N. Ahmed, D.L. Soldan, D.R. Hummels, D.D. Parikh, “Sequential regression Considerations

of Adaptive Filter”, IEE Electronics Letters, Vol. 13, No.15 pp. 446-447, July 1977.
8. S.C. Douglas, “Introduction to Adaptive Filters”, Digital Signal Processing Handbook Ed.

Vijay K. Madisetti and Douglas B. Williams Boca Raton: CRC Press LLC, 1999
9. S. Haykin, “Adaptive Filter Theory”, Third Edition, Prentice Hall ed., 1996
10. Ali H. Sayed, “Fundamentals of Adaptive Filtering,” IEEE Wiley - Interscience, 2003.
11. A. Uncini, “Fundamentals of Adaptive Signal Processing,” Springer, ISBN: 978-3-319-02806-4,

2015.
12. L. Landweber, “An iteration formula for Fredholm integral equations of the first kind,” Amer.

J. Math. 73, 615-624, 1951.
13. D. Marquardt, “An Algorithm for Least Squares Estimation on Nonlinear Parameters”, SIAM

J. APPL. MATH.11, pp 431–441, 1963.
14. H.J. Kushner, “Approximation and Weak Convergence Methods for Random Processes, with

Applications to Stochastic Systems Theory,” MIT Press, ISBN 0262110903, 9780262110907,
1984.

15. M. Dentino, J. McCool, and B. Widrow, “Adaptive filtering in the frequency domain,” Pro-
ceedings of IEEE, Vol. 66, pp. 1658-1660, Dec. 1978.

16. N. J. Bershad and P. D. Feintuch, “Analysis of the frequency domain adaptive fiter,” Proc.
IEEE, vol. 67, pp. 1658 - 1659, Dec. 1979.

17. E. R. Ferrara, “Fast implementation of LMS adaptive filters,” IEEE Transactions Acoustic
Speech, and Signal Processing, Vol. ASSP-28, pp. 474-475, Aug. 1980.

18. G.A. Clark, S.K. Mitra, S.R. Parker, “Block Implementation of Adaptive Digital Filters,”
IEEE Transactions on Circuits and Systems, Vol. CAS-28, No. 6, pp. 584-592, June 1981.

19. G.A. Clark, S.R. Parker, S.K. Mitra, “A Unified Approach to Time- and Frequency-Domain
Realization of FIR Adaptive Digital Filters,” IEEE Transactions Acoustic Speech, and Signal
Processing, Vol. ASSP-31, No. 5, pp. 1073-1083, October 1983.

20. S.S. Narayan and A. M. Peterson, “Frequency Domain Least-Mean Square Algorithm,” Pro-
ceedings of IEEE, Vol. 69, No. 1, pp. 124-126, January 1981.

21. J.C. Lee and C.K.Un, “Performance analysis of frequency-domain block LMS adaptive digital
filters,” IEEE Trans. Circuits Syst., vol. 36, pp. 173-189, Feb. 1989.

22. D. Mansour, A.H. Gray, “Unconstrained Frequency-Domain Adaptive Filter,” IEEE Trans-
actions Acoustic Speech, and Signal Processing, Vol. ASSP-30, No. 5, pp. 726-734, October
1982.

23. J.J. Shynk, “Frequency Domain and Multirate Adaptive Filtering,” IEEE Signal Processing
Magazine, Vol. pp. 14-37, January 1992.

24. M. R. Asharif, T. Takebayashi, T. Chugo, and K. Murano, “Frequency domain noise canceler:
Frequency-bin adaptive filtering (FBAF)”, in Proc. ICASSP, pp. 41.22.1–41.22.4, 1986.

25. B. Farhang-Boroujeny, K.S. Chan, “Analysis of the Frequency-Domain Block LMS Algo-
rithm”, IEEE Transactions on Signal Processing, Vol. SP-48, No. 8, pp. 2332 - 2342, August
2000.

26. S. M. Kuo and D. R. Morgan, “Active Noise Control Systems’ - Algorithms and DSP Imple-
mentations” New York: Wiley, 1996.

References 371

27. E. A. Wan, “Adjoint LMS: an efficient alternative to the filtered-X LMS and multiple error
LMS algorithms,” in Proc. IEEE ICASSP-1996, pp. 1842–1845, 1996.

28. S. Shaffer and C. S. Williams, “The filtered error LMS algorithm,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process., Boston, USA, Apr. 1983, pp. 41-44.

29. S. C. Douglas, “An efficient implementation of the modified filtered-x LMS algorithm,” IEEE
Signal Process. Lett., vol. 4, no. 10, pp. 286-288, Oct. 1997.

30. S. J. Eliott and P. A. Nelson, “Active noise control,” IEEE Signal Processing Mag., vol. 10,
no. 4, pp. 12-35, Oct. 1993.

