
Chapter 5
Special Filters for Audio Applications

5.1 Introduction

In DASP, there is a huge amount of literature about filtering systems designed for
specific applications [1]-[79].

In this chapter we describe and deepen the study of some circuit structures, here
called ”special”, commonly used in acoustic signal processing. The study of these ar-
chitectures is fundamental for the realization of audio effects, the modeling of complex
acoustic systems, the conversion of sampling frequency into non-rational ratios, and
so on [26].

In particular, in the first part of the chapter are introduced specific filters called
comb-filter, their multi-channel extension denoted feedback delay networks (FDN), the
all-pass (AP) filters, also called universal comb filters and the implementation struc-
tures of circular buffer delay lines. In the second part are introduced the orthonormal
filter architecture like the Kautz-Broome and Laguerre filters, and the warped signal
processing methods. The third part of the chapter concerns fractional delay lines and
finally digital oscillators are briefly introduced.

5.2 Comb Filters

Comb filters are so called because their amplitude response, which somehow resembles
the shape of a comb, is characterized by a number of resonances and anti-resonances.
In general, comb filters can be implemented as non-recursive FIR type or as recursive
filters or IIR type.

5.2.1 FIR Comb Filters
The non recursive comb filter or FIR-comb has the structure shown in Fig. 5.1.

The input-output relationship is expressed with the following difference equation:

y[n] = x[n] +g ·x[n−D] (5.1)
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Fig. 5.1 Simple non-
recursive comb filter.  
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while the transfer function (TF) turns out to be:

H(z) = 1 +gz−D (5.2)

Fig. 5.2 Pole-zero, mag-
nitude and phase response
of non-recursive comb
filter. a) D = 10 and
g = −0.7. b) D = 10 and
g = 0.7.

0 0.1 0.2 0.3 0.4
Normalized frequency

0

0.5

1

1.5

2

|H
(e

j
)|

Magnitude Plot

0 0.1 0.2 0.3 0.4
Normalized frequency

-1

-0.5

0

0.5

1

ar
g[

H
(e

j
)]

Phase Plot

0 0.1 0.2 0.3 0.4
Normalized frequency

0

0.5

1

1.5

2

|H
(e

j
)|

Magnitude Plot

0 0.1 0.2 0.3 0.4
Normalized frequency

-1

-0.5

0

0.5

1

ar
g[

H
(e

j
)]

Phase Plot

 

0.1 0.5
Normalizid frequency

0.2 0.3 0.40

( )  

[dB]

H f

15

0

5

10

5

0.1 0.5
Normalizid frequency

0.2 0.3 0.40
50

0

25

25

50

1 g 1 g

( )

[deg]

H f

0.1 0.5
Normalizid frequency

0.2 0.3 0.40
15

0

5

10

5

0.1 0.5
Normalizid frequency

0.2 0.3 0.40
50

0

25

25

50

a)

b )

1 g 1 g

a)

b )

In case g =1, using De Moivre’s formula, it is easy to verify that the frequency
response of the filter is :

H(ejω) =
√

2(1 + cos(ωD))

while the group delay is:
τg(ω) = D

2 .

With reference to Fig.s 5.2 and 5.3, we can observe the particular structure of the
frequency response characterized byD zeros (orD/2 pairs of complex-conjugate zeros)
uniformly distributed on the unitary circle.

Therefore, the amplitude response results characterized by D/2 minimum points
(zeros), equally spaced between the normalized frequency 0 and 0.5, which give to the
frequency response a shape reminiscent of a comb.
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Fig. 5.3 Poles and zeros
diagram of non-recursive
comb filter. a) D = 10 and
g = −0.7. b) D = 10 and
g = 0.7.
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5.2.2 IIR Comb Filters
The recursive comb filter or IIR-comb, has the structure shown in Fig. 5.4. Note that,
in this case, the DL can be inserted in the feedforward or in the feedback branch. The
input-output relations, for the topologies in Fig 5.4, are expressed with the following
differences equation:

y[n] = x[n−D]−g ·y[n−D] (5.3)
y[n] = x[n]−g ·y[n−D] (5.4)

while the respective TFs turn out to be

H(z) = z−D

1 +gz−D
(5.5)

H(z) = 1
1 +gz−D

. (5.6)

Note that the network functions for the two topologies have the same denominator.

Fig. 5.4 IIR comb filters.
a) DL in the feedforward
branch. b) DL in the
feedback branch.
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Fig. 5.5 Amplitude and
phase response of the
recursive comb filter (with
DL in the feedforward
branch) for: a) D = 10 and
g = −0.7. b) D = 10 and
g = 0.7.
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Fig. 5.6 Amplitude and
phase response of the
recursive comb filter (with
DL in the feedforward
branch) for: a) D = 10 and
g = −0.7. b) D = 10 and
g = 0.7.

-1 0 1
Re(z)

-1

-0.5

0

0.5

1

Im
(z

)

Pole-Zero Plot

-0.8

-0.6

-0.4

-0.2

0

h
[n

]

Impulse Response Plot

0 50 100
n

-1 0 1
Re(z)

-1

-0.5

0

0.5

1

Im
(z

)

Pole-Zero Plot

-0.4

-0.2

0

0.2

0.4

0.6

h
[n

]

Impulse Response Plot

0 50 100
n

 
 
 
 
 
 
 
 
 
 
 
 
 

Im

0

1

0.5

1

0.5

0 10.51 0.5 Re

Im

0

1

0.5

1

0.5

0 10.51 0.5 Re

a)

b )

1

1

0

Amp

0 50 Samples

0

1

1
0 10050 Samples

Amp

a)

b )

Fig. 5.5 shows the frequency and phase response curves of TF in Eqn. (5.5). In Fig.
5.6 for the same TF, the poles-zeros diagram and the trend of the impulse response
are shown.

5.2.3 Multidimensional Comb Filter: The Feedback Delay
Networks

The single input-output comb structure, seen in the previous paragraphs, can be
generalized to the vector case as multiple-input-multiple-outputs (MIMO) comb filter.
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This model illustrated in Fig. 5.7 takes the name of Feedback Delay Network (FDN).
FDNs have been proposed in order to model and implement artificial reverberators
in an efficient and flexible way by Stautner and Puckette [70]-[72].
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Fig. 5.7 General model of
a multiple-input-multiple-
outputs comb filter or
feedback delay networks
(FDN).

With reference to Fig. 5.7 in which x represents the input signals vector and y the
output vector, the input-output relation results to be a multidimensional generaliza-
tion of the comb filter equation (5.3). So we have

y[n] = x[n−D] +A ·y[n−D] (5.7)

Where A = QG is defined as a transition or feedback matrix, and G = diag(gi), for
i= 1, ..., N , is diagonal matrix. In the frequency domain, the previous expressions
become

Y(z) = D(z)X(z) +AD(z)Y(z) (5.8)

while the TF is
H(z) = [1−AD(z)]−1 D(z)

where

D(z) ,


z−D1 0 · · · 0

0 z−D2 · · · 0
...

... . . . 0
0 0 0 z−DN

 .
Remark 5.1. Observe that, the FDN’s output y[i] are back-feeded to all inputs. In
case the Q matrix (and consequently also the A) were diagonal the FDN structure
would behave like a bank of independent comb filters.

5.2.3.1 Space State FDN Representation and Stability

In case D1 = D2 = · · · = DN = 1, the (5.7) and (5.8) are equivalent to the standard
state space model
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s[n+ 1] = As[n] +x[n]
y[n] = s[n]

(5.9)

where s[n] ∈ RN×1 is the state-variables vector.
In case the Di delays are arbitrary the description can be made in terms of the

augmented state space model, in which the position we have

s[n+ 1] = A


s1[n−D1]
s2[n−D2]

...
sN [n−DN ]

 .
Property 5.1. According to the Lyapunov’s stability criterion, the stability of the
FDN is ensured when the state vector norm is decreasing over time when the input
signal is null [72]

‖s[n+ 1]‖< ‖s[n]‖ , ∀n≥ 0

From the the previous property, considering a L2-norm, defined as ‖s‖L2
=
√
s2
1 +s2

2 + ...+s2
N ,

and in terms of the transition matrix A = GQ, we have that

‖As[n]‖L2
< ‖s[n]‖L2

.

If Q is an orthogonal matrix, stability is then guaranteed when ||< 1 ; that is

G =


g1 0 · · · 0
0 g2 · · · 0
...

... . . . ...
0 0 · · · gN

 , |gi|< 1

Property 5.2. FDN is said to be lossless if and only if the feedback matrix A has
unitary module eigenvalues and linearly independent eigenvectors.

5.3 All-Pass Filters

An all-pass filter has a transfer function where the zeros are reciprocal of the poles.
As a result, the amplitude response is flat (the zero module cancels the pole module)
while, being the poles and zeros inside and outside the unitary circle respectively, the
phases of the poles and zeros have the same sign. The phase, therefore, can assume
even high values: the all-pass is not in fact at minimum phase filter1. This feature, as
we will see later in the text, makes them particularly useful in many DASP application
scenarios.

The TF of an all-pass filter of order N results to be
1 A stable rational TF H(z) = N(z)

D(z) is said minimum-phase TF if the zeros contribute positively
to the phase: i.e. in the case of analog circuits the N(z) roots are to the left of the imaginary axis;
in the case of TD circuits the N(z) roots are inside the unitary circle.
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H(z) = z−NA(z−1)
A(z) = aN +aN−1z

−1 + ...+a1z
−(N−1) +z−N

1 +a1z−1 + ...+aNz−N
(5.10)

it can be observed that the polynomial at the numerator is the mirrored version of
the polynomial at the denominator.

In the time domain the input-output relationship is therefore

y[n] = aNx[n] + ...+x[n−N ]−a1y[n−1]− ...−aNy[n−N ].

In case the TF n takes the following expression

H(z) = g+z−D

1 +gz−D
(5.11)

the all-pass filter can be seen as a combination of a previously studied IIR and FIR
comb filter and is also called the universal comb filter [4]. In this case, the input-output
relationship simplified as

y[n] = gx[n] +x[n−D]−gy[n−D]

in this case the corresponding diagram (in direct form II) is the one shown in Fig.
5.8. The characteristic curves of the universal all-pass comb filter are shown in Fig.s
5.9 and 5.10.

Fig. 5.8 All-pass or uni-
versal comb-filter, in direct
form II.  
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Fig. 5.9 Amplitude and
phase response of the all-
pass filter in Fig. 5.8 for:
a) D = 10 and g =−0.7. b)
D = 10 and g = 0.7.
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Fig. 5.10 Poles-zeros dia-
gram and impulse response
of the all-pass filter with
FT (5.11) for a) D = 10
and g = −0.7. b) D = 10
and g = 0.7.
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5.3.1 Nested All-Pass Filters
The nested AP filter architecture derives from the property the following property.

Property 5.3. If in an AP filter, e.g. of the type described by TF (5.10), every unit
delay element z−1 is replaced with an FT z−1A(z), with A(z) of AP type, the resulting
FT is also an all-pass filter.
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This property can be easily verified by considering for example an AP of the first
order with a TF:

A1(z) = z−1 +a1
1 +a1z−1

where each z−1 element is replaced by the following rule z−1 ← z−1A2(z). The re-
sulting TF can be easily calculated as

H(z) = z−1A2(z) +a1
1 +a1z−1A2(z) .

Choosing A2(z) as a first order all-pass, as shown in Fig. 5.11

A2(z) = z−1 +a2
1 +a2z−1

we obtain a total TF of the second order

H(z) = z−2 + (a1a2 +a2)z−1 +a1
1 + (a1a2 +a2)z−1 +a1z−2 .

Note that, in the previous expression, as for Eqn. 5.10, the polynomial at the numera-
tor is the mirrored version of the polynomial at the denominator. It results, therefore,
that the H(z) is of all-pass type.

Generalizing, starting from a TF AP A1(z), it is possible to create multiple nests
where every z−1 element is replaced with the following rule

z−1← z−1A2(z)← z−1A3(z)← ·· ·

Fig. 5.11 Nested first
order all-pass filters in
Direct Form II.
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Remark 5.2. Observe that, an all-pass filter can be implemented with “robust ar-
chitectures” such as the ladder and lattice forms. For more information on such ar-
chitectures, which are widely used in the audio field, see [62]-[66].

As an example, in Fig. 5.12-a) we report a way, based on a graphic-topological trans-
formation, to derive the two-multiplier lattice structure.

In addition, in Fig. 5.12-b) is reported aN -order all-pass filter, implemented nesting
N first-order sections . Note that, each first order section has only one multiplier [49].
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Fig. 5.12 Nested lattice
AP filters. a) Derivation
of the lattice form with
simple graphic transforma-
tion from Direct Form II.
b) N -order all-pass filter
implemented with N first
order all-pass nested filters
(with a single multiplier).
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5.4 Special Rational Orthonormal Filter Architecture

In many audio applications it is necessary to use filters to model acoustic phenomenon
with long duration. However, a room impulse response (RIR) at the usual audio sam-
pling frequencies can be very long and characterized by complex time-frequency struc-
ture. Although, this problem can be partially solved using IIR filters non recursive
TFs have several contraindications such as difficult design, non-linear phase, stability
problem when the poles are estimated as time-varying parameters, etc.

In general terms a RIR represents an “all-zeros” or FIR model, while considering
conventional parametric models for room acoustics (see §3.2) the room transfer func-
tion (RTF) can be expressed in z-domain as in Eqn. (3.3) and factorized in term of
poles and zeros (see §4.2.4, Eqn. (4.18)). Thus we can write

HRTF (z) =
∑Q
k=0 bkz

−k∑P
k=0 akz

−k
=
(
b0
a0

) ∏Q
k=1(1− qkz−k)∏P
k=1(1−pkz−k)

(5.12)

where qk are the zeros that model the RIR’s anti-resonances and time delays, and pk
are the poles associated with room natural modes.

Rearranging the above we can write

HRTF (z) =
N∑
k=1

[
w−k −w

+
k z
−1

(1−pkz−1)(1−p?kz−1)

]
=

N∑
k=1

Pk(z) (5.13)

where Pk(z) are second-order sections denoted resonators. The above expression cor-
responds to the parallel of N resonators as shown in Fig. 5.13 that represents a
possible physical parametric model of the room. The relative RIR is a finite sum of
exponentially decaying sinusoids, as in Eqn. (1.34), where the frequency and decay
values are defined by the relative pole.



5.4 Special Rational Orthonormal Filter Architecture 233

Fig. 5.13 Physical para-
metric RTF model as par-
allel of resonant circuits
Pk(z). The relative RIR is
a finite sum of exponen-
tially decaying sinusoids
where the frequency and
decay values are defined by
the relative pole. (Modified
form [17]).
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In the past, one of the most critical aspects in the use of such parametric models
was the problem of identifying their parameters. The recent progress in audio-specific
adaptive algorithms, some of which will be presented and discussed in Chapter 6, and
the increased computational power even in low-cost devices, have been the main archi-
tects of the renewed and recent interest in parametric structures for the computational
analysis of the acoustic scene .

However, in addition to conventional parametric models of Eqn. (5.12), there has
been renewed interest in the use of rational orthogonal structures, referred to as
orthogonal base filters (OBF), which may be more appropriate for complex acoustic
modeling. The main objective of this approach is to obtain a :

• compact representation of a IRs (in particular RIRs);
• parsimonious and also more controllable approximation of a IR useful for appli-

cations;
• efficient adaptive filtering algorithms.

This approach allows to map long impulse responses (IRs) in a small number of
elementary TFs. These substructures are generally of reduced complexity, modular
and allow a scalable approximation of the desired H(z), for low cost hardware devices
implementation, eliminating factors considered “less significant”, according to some
criteria.

The following are briefly presented and discussed some methodologies for the fac-
torization of a given TFH(z), that originate from analog network synthesis techniques
(later extended to discrete time), and some typical applications in the DASP scenario
[6]-[13].

5.4.1 Kautz-Broome OBF Model
In 1954 Kautz in [6] developed a methodology to approximate the impulse response
of a linear system, developing the h(t) as a series of infinite terms, such that it could
be approximated with truncation to the first N terms such as

h(t) =
N∑
i=1

wiki(t) (5.14)
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where ki(t), hereafter denoted as Kautz functions, are defined as the inverse Laplace
transforms of the TFs defiend as

Ki(s) = ci

√
pi+p?i
s+pi

i−1∏
n=0

s−p?n
s+pn

(5.15)

where ck ∈ C, |ck| = 1, and such that the function ki(t) are orthonormal functions,
i.e. we have that

〈ki(t),kj(t)〉=
{

1, i= j

0, elsewhere

and defined as sums of damped exponentials and exponentially damped sinusoids.
that form an orthonormal basis in Hilbert space [6]-[9].

Remark 5.3. Observe that, the Eqn. (5.15) can be written as Ki(s) = Vi(s)Ai(s)
where Vi(s) is a low pass TF, and Ai(s) an all-pass section, respectively defined as

Vi(s) =
ck
√
pk+p?k

s+pk
, Ai(s) = s−p?i

s+pi

such that the overall generative model of the impulse response h(t) is equivalent of
an analog ladder network as shown in Fig. 5.14.

Fig. 5.14 Kautz ladder
analog network generative
model for the impulse re-
sponse h(t). The cells Vk(s)
are one pole low-pass fil-
ters, while the transversal
cells Ak(s) are all-pass
TFs.
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5.4.1.1 Discrete Time Kautz-Broome OBF Model

Later in 1965 Broome in [8], analyzed the problem over a discrete-time domain defin-
ing a set of orthonormal ki[n] functions that have exponential decay. However, the
problem can be generalized by imposing the orthonormalization conditions of a given
set of suitable functions. More recently in [11], has been proposed a z-domain TFs
sequence defined as

Fi,j(z) = z−1

(1−piz−1)j , i ∈ N, 1≤ j ≤mi (5.16)

where pi is a complex poles with |pi| < 1, such that pi 6= pk, i 6= k, and where mi is
the multiplicity of pole pi. Thus, applying Gram-Schmidt orthonormalization to the
sequence of functions (5.16), the result is the so-called discrete-time Kautz TFs, also
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denoted as Takenaka-Malmquist basis2, that are characterized by the following TFs

Ki(z) =
√

1−pip?i
1−z−1pi

i−1∏
n=0

z−1−p?n
1−pnz−1 (5.17)

that have a identical structure to the analog TFs (5.15).
As for the analog case, with the above conditions, the rational TFs Ki(z) represent

a set of basis filters that are orthonormal in Hilbert space under mild conditions∑
i(1−|pi|) =∞ [9], [18], thus we can write

H(z) =
N∑
i=1

wiKi(z) (5.18)

wich will be called the discrete-time Kautz-Broome OBF (KB-OBF) model, where
Ki(z) are the so called discrete-time Kautz-filters or -units.

The the RTF can be modeled as a cascade of elementary rational orthogonal TFs
such that the overall output is a linear combination of the Kautz units outputs fk[n]

y[n] = wT f

where w is the weights vector and f is the vector.

Remark 5.4. Observe that, the KB-OBF of Eqn. (5.17), can be written in the fol-
lowing recursive form [8], [12]

K2k−1(z) = C
(k)
1 (1−a(k)

1 )A(k)(z)

K2k(z) = C
(k)
2 (1−a(k)

2 )A(k)(z)
, k = 1, 2, ... (5.19)

where the sub-sections A(k)(z) are second-order TFs defined as

A(k)(z) = 1
(z−pk)(z−p?k)

k−1∏
j=1

(1−pjz)(1−p?jz)
(z−pj)(z−p?j )

. (5.20)

In addition, to guaranty the orthonormality, for the parameters a(k)
1 , a(k)

2 , pk, C(k)
1

and C(k)
2 ; the following conditions apply

(1 +a
(k)
1 a

(k)
2 )(1 +pkp

?
k)− (a(k)

1 +a
(k)
2 )(pk+p?k) = 0 (5.21)

C
(k)
j =

√√√√ (1−p2
k)(1−p?2k )(1−pkp?k)

(1 +a
(k)2
j )(1 +pkp

?
k)−2a(k)

j (pk+p?k)
, for j = 1,2. (5.22)

2 Note that, this sequence of orthonormal functions was originally derived in the 1920s by Takenaka
and Malmquist (see for example [11] and the references inside) and some-time will henceforth be
referred to as the Takenaka–Malmquist functions.
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The functions Kk(z), k = 1, 2 , ... , are usually called the discrete Kautz functions.

5.4.1.2 Orthonormal Filters Architectures

As for the analog ladder network in Fig. 5.14, to facilitate development, as suggested
in [10] we can write Ki(z) = Vi(z)Ai(z), where the TFs Vi(z) are one pole low-pass
filters defined as

Vi(z) = z−1√1−|pi|2
1−piz−1

and the TFs Ai(z) are all-pass cells defined as

Ai(z) = z−i−p?i
1−piz−i

where pi, i = 1, ..., N are the TF parameters, and where the term
√

1−pip?i is a
normalization factor such that the filters Vi(z) has unit gain at DC.

Fig. 5.15 Kautz discrete-
time ladder filter for the
representation of long
impulse response h[n]. The
cells Vk(z) are one pole
unit gain low-pass filters,
while the transversal cells
Ak(z) are all-pass TFs.
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Kautz’s factorization corresponds to a discrete-time ladder network illustrated in
Fig. 5.15. Thus, by definition the outputs available at each ladder section represent a
set of orthogonal signals.

Remark 5.5. Note that, according to [17], the Kautz model can be seen as a general-
ization of the introduced above RTF physical parametric model. Thus the orthonormal
generalization of Fig. 5.13, is shown in Fig. 5.16 where Pi(z) are simply discrete-time
resonators defined as

Pi(z) = 1
(1−piz−1)(1−p?i z−1)

the Ai(z) are second-order all-pass sections

Ai(z) = (z−1−pi)(z−1−p?i )
(1−piz−1)(1−p?i z−1)

and the TFs N(z) defined as

N±i (z) = |1±pi|

√
1−|pi|2

2 (z−1∓1)
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has been inserted in order to guarantee the orthonormal conditions.

Fig. 5.16 Kautz orthog-
onal physical parametric
RTF model. (Modified
form [17]).
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5.4.2 Parameters Estimation of KB-OBF Model
Although the adaptive algorithms for parameters estimation of acoustic models, will
be introduced in Chapter 6, below are some methods applied for the orthogonal
structures previously discussed.

5.4.2.1 Estimation of wn parameters

The Kautz function are orthogonal, so we have that
∑
n fi[n]f?j [n] = δi,j . It follows

that the determination of the wn coefficients that ensure the validity of the Eqn.
(5.18), can be derived by solving the following normal equations

wn =
M∑
k=1

h[k]f?n[k], n= 1, ..., N.

Thus, Kautz OBF is a linear in the parameters (LIP) model w.r.t parameters wn. In
fact, let F ∈ CN×M be the data matrix that contains the orthogonal signal fi[n], for
M =N the determination of parameters wn is trivial. However, in parsimonious TF
representation we have that N <M . In this case the parameter can be determined by
LS criterion solving the normal equations; thus for under-determined linear system
we have that the LS solution is

w = FH(FFH)h.

Finally note that the impulse response energy, considering the Parseval theorem can
be written as

E =
∑
n

h[n]h?[n] = 1
2π

∫ 2π

0
H(ejω)H?(ejω)dω =

N∑
n=1
|wn|2 (5.23)
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5.4.2.2 Estimation of pn Parameters and Model Reduction

The Kautz series is not unique and depend on the ordering of poles. This ordering can
be chosen such that the first terms contribute most on the overall impulse response.

The availability of an ordered model allows the truncation of the Kautz series and
thus a parsimonious and scalable representation of the RTF

In general, for the determination of poles starting from the RIR we proceed with
iterative algorithms that minimize the given cost function (CF). For example, a CF
commonly used in this problem is the misalignments defined as follows [15]-[17]

J(h) = 10log10

∑L−1
n=0 |h[n]− ĥ[n]|2∑L−1

n=0 h
2[n]

(5.24)

where, h[n] is the actual impulse response and ĥ[n] is the impulsive response obtained
considering the desired RTF target model such as the KB-OBF model.

In practice, we proceed with an iterative method, gradually refining the target
model, until we obtain an acceptable minimum of CF (5.24). Moreover, it should be
noted that the so-called common poles (CAPs) (see §3.2.1.3), must also be taken into
account when determining the KB-OBF models.

Remark 5.6. Note that, the parsimonious RTF representation is a central theme in
modern DASP. Alternative methods to the simple LS are available in the literature
that allow to insert particular a priori knowledge about the problem. If the system is
of the so-called sparse type, for example when there are few a priori known dominant
resonances or anti-resonance, it is possible to insert appropriate constraints to the
optimization problem (5.24), that take into account these a priori knowledge.

Moreover, in addition to the classical estimation techniques, that allow an analysis ac-
cording to various analytical criteria, it is also possible to consider specific perceptual
audio metrics.

5.4.3 Laguerre Filters
Laguerre’s filters are a special case of Kautz filters for βk = a where a ∈ R [18]-[20],
[12]. So the conditions (5.21) and (5.22) simplify as

a
(k)
1 = a, a

(k)
2 = 1/a, C(k)

1 =
√

1−a2, C
(k)
2 = aC

(k)
1 .

The real discrete Laguerre z-transform TFs, is sequence of simple TFs defined as

Li(z,a) =
√

1−a2

1−az−1 ·
(
z−1−a
1−az−1

)i−1
, i≥ 0, |a|< 1

and the following properties apply:

• for a= 0, Li(z,0) = z−i, i.g. the Laguerre polynomil is a standard delay-line;
• for i≥ 0, Li+1(z,0) =A(z,a)Li(z,0), where A(z,a) is a simple all-pass section.
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i.e., these sequences can be generated in cascade, starting with a first order low-pass
section L0(z,a), followed by first order simple all-pass sections A(z,a).

Thus the Kautz’s structure in Fig. 5.15 is simplified and resulting cascade form is
shown in Fig. 5.18.

Fig. 5.17 Laguerre filter
of order M − 1. For λ = 0
it becomes a standard FIR
filter.
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The Laguerre filter, as shown in Fig.5.18, is obtained by a simple modification of
the FIR filter replacing each unit delay element by a first order all-pass section, and
applying a first order low-pass filter, with the same pole used in all-pass sections, to
the filter input signal. By properly choosing the all-pass filter a parameter, Laguerre’s
filters are able to approximate long impulse responses with a reduced number of
parameters than a FIR filter.

Denoting as L(q){·} the time-delay operator such that x[n− 1] = L(q){x[n]}, and
as L(q,a)

k {·} operator that implement the all-pass section

xk[n] = L
(q,a)
k {x[n]}
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Fig. 5.18 Lattice La-
guerre filter of order N−1.
For λ = 0 it becomes a
standard FIR filter.

5.4.4 Frequency Warped Signal Processing
The Discrete Fourier Transform (DFT) of a sequence, is defined as a scalar product
between the sequence and a set of orthogonal basis functions which are uniformly
spaced in frequency around the unitary circle of the z plane. By defining n and k,
respectively, the time and frequency indexes, we can write

X(k) =
〈
x[n],ϕ(ejω)

〉
, ϕ(ejω) = e−jk

2π
N n, k,n= 0,1, ...,N −1.

Ths DFT is usually evaluated with algorithm such as the Fast Fourier Transform
(FFT) [1]-[3].
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In the audio domain, as for example in psychoacoustic analysis, non-uniform fre-
quency scales such as the Bark scale are often used (see §2.3.4.4, Eqn. (2.4)). Hence,
in the presence of non-uniform scales, as a DFT alternative, frequency analysis can
be done through a, recursive or non-recursive, non-uniform filter bank such as, for
example, Q-constant filter banks.

In 1971 Oppenheim, et al. [21], proposed a different processing paradigm based on
the so called Frequency Warped Filters, which inherently allow efficient non-uniform
frequency analysis. The procedure consists in defining a shift-variant transformation,
implemented by a a henceforth called warping operator W(·), based on suitable dis-
persion functions, based on a simple filter and inserted as preprocessing before the
frequency analysis.
Remark 5.7. Note that, for the warping operator we can consider two distinct as-
pects. The first, is to apply the warping operator to a sequence x[n] to produce a
“warped” output sequence xw[n] =W(x[n]). The second aspect, is to apply warp-
ing operator to an impulsive response h[n] to produce a “warped” impulse response
w[n] =W(h[n]) and then a linear warped transfer function (WTF).
While the production of a warped signal is of poor interest, the second aspect appears
to be general as WTF could better meet some target TF specifications. In addition,
the WTF has aspects of specific interest to the DASP. In fact, WTFs has proved
particularly useful in DASP because the non-uniform frequency resolution can be
tailored to better approximate the frequency representation of the hearing [24],[25].

5.4.4.1 Dispersion and Frequency Distortion Functions

The original sequence x[n] is expanded into a set of basis functions dk[n], denoted
as dispersion basis functions, with appropriate properties, according to the following
linear transformation

x[n] = 〈g[n],dk[n]〉=
∞∑

k=−∞
g[k]dk[n]. (5.25)

From the previous discussion, for the determination of consistent set of basis functions
dk[n] and their z-transformations Dk(z), we must enforce the following constraints.
1. The frequency transforms of the sequences x[n] and g[n], respectively defined as

X(ejω) =
∞∑

k−∞
x[k]e−jωk , and G(ejω̂) =

∞∑
k−∞

g[k]e−jω̂k

are such that the frequencies ω and ω̂, are related by a simple change of variables
ω = θ(ω̂), where θ(·) is a distortion function.

2. A necessary condition for the distortion function θ(·) is that

G(ejθ(ω̂))≡X(ejω̂), ⇔ ω = θ(ω̂) and ω̂ = θ−1(ω). (5.26)

3. Remember that z = r ·ejω, the mapping between z and ẑ concerns the frequency,
i.e. the only the angle jω and not the radius r that remains unitary and inde-
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pendent of the frequency. Therefore, the dk(n) basis functions must have all-pass
characteristics.

4. The determination of the basis functions dk[n] is done by limiting the frequency
mapping in the range ω, ω̂ ∈ [0,2π].

Therefore, for the above positions, requiring that Dk(z) = Z{dk[n]} are rational all-
pass functions, we have that

Dk(z) =
[
z−1−λ
1−λz−1

]k
(5.27)

where the term Dk=1(z) is denoted dispersive element. Consequently, the distortion
function is a bilinear conformal mapping from the unit disk onto another unit disk.
Moreover, by simple manipulation of the above, we have that the inverse transforma-

Fig. 5.19 Frequency
warping of a 1-st order
all-pass section D1(z) (see
Eqn. (5.28)). λ is the warp-
ing parameter
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tion is produced by replacing λ with −λ. In particular, for k = 1 we have

ω = θ(ω̂) = tan−1
[

(1−λ2)sin(ω̂)
(1 +λ2)cos(ω̂)−2λ

]
ω̂ = θ−1(ω) = tan−1

[
(1−λ2)sin(ω)

(1 +λ2)cos(ω)−2λ

] (5.28)

where −1 < λ < 1 is denoted as warping parameter and whose trend is reported in
Fig. 5.19.

In particular, as shown in Fig. 5.20, Eqn. (5.28) is a bilinear-transformation such
that the unitary circle in the z-plane is mapped in the unitary circle in the ẑ-plane.

5.4.4.2 Frequency Warped Filters Architecture

The warped signal processing, consists in the generalization of the scheme in Fig.
5.20, where the warping operator is applied on the filter impulse response in order to
synthesize a given target TF. In practice, the frequency warped filters are numerical
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Fig. 5.20 Frequency
warping of DFT transfor-
mation. The Eqn. (5.28) is
a bilinear-transformation
such that the unitary circle
in the z-plane is mapped
in the unitary circle in the
ẑ-plane.
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transversal or recursive filters, where the unit delays z−1 are replaced with dispersive
elements ẑ−1 =D1(z). An example of M -length warped FIR (WFIR) filter is shown
of Fig. 5.21 [24]-[26], and note that the architecture is similar to the Laguerre filter
presented in §5.4.3.

Fig. 5.21 Warped FIR
(WFIR) filter. The the
warped transfer function
(WTF) is synthesized by
replacing the delay ele-
ments z−1 with all-pass
dispersive element D1(z).
The terms w[n] repre-
sent the warped impulse
response.

1

0

[ ]

[ ] [ ]

T
n
T

n
M

k

y n

h k x n k








 

x h

h x

[ ]x n

[ ]y n

1
1( )D z

[ ]x n

1z

1z

1z

[ 1]x n 

[ 1]x n M 

Delay-line (DL)

Dot 
product

T
nh x



a)

b)

1
1

Dispersive 
Delay-line (DDL)

( )
Dispersive element
D z

1
1( )D z

1
1( )D z

TF

[0]w

[1]w

[ 1]w M 

Let h[n] =Z−1{H(z)} be the impulse response of a FIR filter defined with standard
delay z−1, a warped FIR (WFIR) filter is obtained by replacing z−1 → ẑ−1, i.e.
w[n] =W(h[n]) = Z−1{H(ẑ)}

Thus, we can define the following relationship VEDI (18) ( 19)

H(z) =
∞∑
n=0

h[n]z−n =
∞∑
n=0

w[n]
(
z−1−λ

1−λz−n

)n
H(ẑ) =

∞∑
n=0

w[n]ẑ−n =
∞∑
n=0

h[n]
(
ẑ−1−λ

1−λẑ−n

)n
that define the direct and reverse mapping between TFs H(z) and H(ẑ). Thus, the
frequency response of the warping filter depends on the parameter λ. For λ = 0, the
filter behaves like a normal FIR filter (i.e. w[n] ≡ h[n]), while for λ 6= 0, you have a
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bilinear mappings between z-domain and ẑ-domain. Therefore, the frequency-warping
depends on the warping parameter λ as shown in Fig. 5.19.

Its TF can be written as

Hfirwrp(z) =
M−1∑
m=0

w[m]ẑ−m =
M−1∑
m=0

w[m]{D1(z)}−m

Note that, since each delay element is a first-order IIR all-pass filter tha overall impulse
response of the warped FIR filter has infinite duration. In common practice the length
is however truncated to only M values.

The TF function of an IIR(M ,N) warped filter can be written as

Hiirwrp(z) =
∑M−1
m=0 bm {D1(z)}−m

1 +
∑N−1
m=1 am {D1(z)}−m

Since warping is a simple mapping from z-plane to warped ẑ-plane practically all
conventional DASP methods can be revised in the warped-domain. The topic is very
wide and for more details on implementation refer, for example, to the following
literature [26]-[25].

5.5 Delay-Lines

As we know the delay-line (DL), sometime called tapped-delay-line (TDL), is the
fundamental structure for the implementation of FIR and IIR number filters [1]-[5].
In audio signal processing DLs are extremely important as they are the basis for the
realization of numerous audio effects such as vibrato, flanger, chorus, slapback, echo,
and so on [4], [46], and, as mentioned above, the simulation of room acoustics [5], [47],
[60]. For example, in the case of FIR digital filtering, as shown in Fig. 5.21-a), the
delay line is the element on which the input signal samples are "shifted down" and
then multiplied by the filter coefficients.

In audio signal processing, very often, the delay line is used as a pure delay: i.e. the
signal enters at one end of the line and exits with a certain delay, due to the number
of memory elements, at the opposite end. If the line consists of D elements z−1, it
can be represented with a single block as shown in Fig. 5.22. The DL’s constitutive
relation is therefore:

y[n] = x[n−D] (5.29)

Fig. 5.22 A delay-line
with D memory elements
and compact representa-
tion.
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5.5.1 Circular Buffer Delay-Lines
The DL’s software implementation can be done with a vector in which the samples
are shifted as shown in Fig. 5.23

Fig. 5.23 A delay-line
naive shift mechanism.
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double xdelay(int D, double *xdl, double x)  
{ 
  register int i; 
  for (i=D; i>=1; i‐‐)   // reverse‐order updating  
    xdl[i] = xdl[i‐1]; 
  xdl[0]=x; 
  return xdl[D]; 
} 

The signal sample feeds the first memory location: at each time-clock the sample
flows (i.e. according to the Fig. 5.23, the sample shift-right) and frees the first vector
position where the new incoming sample x[n] is simultaneously entered. Therefore, to
realize the shifting, the algorithm that implements the DL, performs D assignment
operations (w[i] = w[i−1]).

Remark 5.8. Observe that, in common audio applications the delay D required to
perform a certain type of processing (e.g. as in long echo effect), can be hundreds of
[ms] and sometimes even some [s] and, therefore, at typical audio sampling rates the
line length can reach tens of thousands of samples. In these cases, the computational
cost of the shift-operations may not be negligible.

For an efficient implementation of long delay line, it is necessary to avoid shift-
operations according to the technique called circular-buffer addressing [3],[5].

With reference to Fig. 5.24, it is possible to think of the buffer (that implements
the DL), as if it were circularly arranged. Instead of scrolling the samples along the
line, the value of the index (i.e. a pointer p) that point the position where the input
sample is inserted, is increased.

The first signal sample is entered at position zero, the second at position one, and
so on. When the buffer length is exceeded, the first position is overwritten, and so on
(wrap operation).

The last D signal samples, are then always present in the buffer. Taking as output
the value ahead the location where the input is loaded, the output is delayed by D
samples. Always with reference to Fig. 5.24 when n = 7 the output is equal to the
first element of the signal vector or y[n] = x[n−D].

Fig. 5.25 shows two procedures to implement a DL of D samples.
A more general way to implement circular buffers, that realize a TF H(z) = z−D, is

the one called module addressing, described for example in [5], that uses two pointers:
one to define the input p (write pointer) and the other for the output q (read pointer).
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Fig. 5.24 Operating prin-
ciple of a circular buffer.
Diagram of the circular-
buffer that realizes a DL
with D = 7 (8 locations,
from 0 to 7). For n= 8 the
first position of the buffer
is overwritten by the new
incoming signal sample.

Fig. 5.25 Possible im-
plementations of a “C”
functionthat implements
the structure described in
Fig. 5.24.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

double DL1(double *w, int D, int p, double x)
{ 
  w[p] = x;   // Circular buffer index init p = 0; 
  p = (p+1)%D // if (p =  = D) p = 0; else p++;  
return w[p]; 
} 
 
double DL2(double *w, int D, int p, double x) 
{ 
  duoble y = w[p];    // read op. 
  w[p++] = x;         // write op. 
  if (p> = D) {p‐ = D;} // wrap pointer 
return y; 
} 

If you want to realize a DL of order D, saidM the number of accessible contiguous
memory locations, the input and output pointer is linked by the relationship

p= (q+D)%M

where the % symbol indicates the modulus M operation.
At any given time, the input is written to the location addressed by p while the

output is taken from location q. The two pointers are updated as

p= (p+ 1)%M
q = (q+ 1)%M.

The pointers are increased by respecting the buffer circularity.

Remark 5.9. Observe that, in certain dedicated architectures such as wavetable syn-
thesizers, where the sampled waveforms are read sequentially from the buffer and sent
to the D/A converter, the sample can be read with a variable increment pointer. In
general, the sampled waveform that is available in the buffer has a certain duration.
Sometimes, however, in the execution the entire waveform is not used but only a
portion of it.
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If, we indicate with 2r the amount of global available memory locations, and with
M = 2s (with s < r) the memories which are actually used, these locations are not
contiguous and the update of the pointers will have to be done accordingly

p= (p+ 2r−s)%2r

q = (q+ 2r−s)%2r.

In practice, if the addressing is r-bit long, you don’t need to explicitly calculate the
module: you just need to sum it up avoiding overflow. The following also applies

p= (q+m2r−s)%2r.

5.5.2 Delay-Lines with Nested All-Pass Filters
Rather long delay lines, together with all-pass filters, are particularly used in artificial
reverberation circuits [50]. In this case the nested AP structures are particularly
interesting as it is possible to realize several nested filters on a single delay line as
shown in Fig. 5.26.

Fig. 5.26 All-pass filters
nested in direct form II on
a delay line.  
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As you can see, these circuits are simple extensions of the nested-AP filters seen in
§5.3.1.

Let’s consider a circuit with a generic AP TF defined as

Ai(z) = z−Di +ai
1 +aiz−Di

.

This circuit can be implemented on a single DL according to the schematization in
Fig. 5.27-a).

Replacing the ki-th element of the DL with a TF Ai+1(z) we get

z−k1 ← z−k2A2(z)← z−k3A3(z)← ·· ·

The resulting structure is composed of a number of all-pass nested one inside the
other as shown in Fig. 5.27-b). This form is particularly efficient because, in practice,
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Fig. 5.27 All-pass filters.
a) implemented on a single
DL; b) all-pass filters
nested on a single DL.  
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a single delay line is used whose length is equal to the sum of the delays of the
individual APs D =

∑
iDi

5.6 Fractional Delay-Lines

The digital delay line is characterized by a minimum delay that is defined by the
sampling frequency fs of the signal. The minimum time-delay is equal to the sampling
period Ts = 1/fs which, considering the representation with the normalized sampling
rate, is defined as unit delay.

In many applications it is necessary to have a delay that may not be exactly a
multiple of the unit delay. In these situations, indicated as αTs, for α ∈ [0, 1), it is
necessary to define tools able to control a continuous delay or fractional delay (FD).

A FD may be necessary in applications such as: echo cancellation, phased-array
antenna, or more generally array processing problems, pitch-synchronous speech syn-
thesis, time-delay estimation and detection of arrivals, modem synchronization, phys-
ical modeling of musical instruments. In audio signal processing the fractional delay
lines (FDLs) can be used for various types of applications such as, for example, in
the conversion of the sampling rate with an irrational ratio, in various audio effects
such as vibrato, microphones array processing, in the physical modeling of complex
phenomena (FDL are essential in wave-field synthesis); just to name a few [28]-[41],
[47].

From an implementation point of view, fractional delay lines can be seen simply as
numerical filters. Therefore these can be FIR or IIR type, and designed with different
philosophies and methodologies and optimization criterion like max-flat or min-max.
As we will see, simple FDLs can be determined with simple intuitive considerations
or by using optimization techniques usually adopted in the design of numerical filters.
For example, the maximally flat FIR filter approximation is equivalent to the classical
Lagrange interpolation method. However, it is not always convenient or possible to
determine in closed form the impulse responses of decimation and interpolation filters:
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in the case of real-time applications, the computational cost of the exact solution
would be too expensive (see §4.7).

The topic of fractional delay lines is very specific and broad, and only a few aspects
are explained here. For a more in-depth study please refer to the specific bibliography
[27]-[43], [73]-[79].

5.6.1 Problem Formulation of Bandlimited Interpolation and
Ideal Solution

The delay D ∈ R can be decomposed as a integer and a fractional part

D =Di+α

where D is the delay in term of samples, Di = bDc is the integer part of the delay
and α ∈ [01) =D−bDc the fractional part.

Let x[n] be a sequence coming from band-limited analog signal by ideal conversion,
the output of fractional delay line (FDL) is

y[n] = x[n− (Di+α)]

however, in order to avoid aliasing, it is necessary to verify the Nyquist band-limited
condition, compared to the new sampling period.

There are numerous methods in the literature for the determination of FDL [28],
which are generally based on the approximation a so called ideal delay-operator LD{·}
by an FIR/IIR filter or other interpolation techniques. The problem can be formulated
by defining an LD-operator such that

y[n] = LD {x[n]}= x[n−D] (5.30)

which in the frequency domain, in z-transform notation, is defined by the relationship

Y (z) = z−DX(z)

so it turns out that the ideal transfer function (TF) is

Hid(ejω) = e−jωD, |ω| ≤ π. (5.31)

For the module and phase we have that∣∣Hid(ejω)
∣∣= 1, arg

{
Hid(ejω)

}
= Θid(ω) =−Dω.

where Θid(ω) indicate the ideal phase response. The group delay is therefore

τgid =− ∂

∂ω
[Θid(ω)] =D

while for the phase delay we have that
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τpid =−Θid(ω)
ω

=D.

Having a group delay identical to the phase delay means, in fact, that the entire
waveform, regardless of its frequency content, is delayed by a time equal to D.

The ideal solution to delay a signal by a D ∈R quantity is a filter with a TF equal
to (5.31). The impulse response is therefore

hid[n] = 1
2π

π∫
−π

e−jωDejωndω =sin [π (n−D)]
π (n−D) = sinc(n−D) , ∀n. (5.32)

When D is integer so (D = n) the previous expression becomes unitary.
In general, the ideal solution is of limited usefulness for online applications because

the hid: 1) has an infinite length; 2) is non-causal.

5.6.2 Approximate FIR Solution
The ideal solution in Eqn. (5.32) can be approximated in many different ways. Of
special interest in audio applications are digital filters that approximate the ideal
interpolation in a maximally flat manner at low frequencies. In addition, in the case
of the audio signal you should also be very careful with the following aspects: 1) online
and real-time implementability; 2) group delay; 2) perceived quality.

5.6.2.1 Linear Interpolation: I Order FIR Filter

The simplest and most intuitive way to determine a fractional delay is to consider
a linear interpolation between two successive samples of the signal as shown in Fig.
5.28.

Fig. 5.28 Linear interpo-
lation between two succes-
sive samples.
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Let α be the value representing the order of interpolation between the x[n−1] and
x[n] samples. The equation of the straight line in the ordinate passing between these
points is worth

α−0
1−0 = x[n−1 +α]−x[n−1]

x[n]−x[n−1]

the expression of the linear interpolator is therefore a FIR filter h = [1− α α]T .
Therefore the interpolated sample can be compute as
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x[n−1 +α] = αx[n] + (1−α)x[n−1] = x[n]− (x[n] +x[n−1])α. (5.33)

Based on the type of factorization of the previous expression, the linear interpolator
filter scheme can be made with two multipliers or, using the equivalent polynomial
Horner’s scheme (or Farrow structure §5.6.7), with only one as shown in Fig. 5.29

Fig. 5.29 Possible
schemes for the realization
of the linear interpolator.
a) With one multiplier and
two adders. b) With two
multipliers and one adder.
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To evaluate the frequency response of the linear interpolator filter, it is necessary
to evaluate the DTFT of the Eqn. (5.33) for which we have

H(z)|z=ejω = Y (ejω)
X(ejω) = α+ (1−α)e−jω (5.34)

Property 5.4. The linear interpolator can be derived from Taylor’s expansion of the
term x[n+α]

x[n+α] = x[n] +αẋ[n] +α2ẍ[n] +α3...x [n] + · · · (5.35)

considering the I order approximation and posing ẋ[n] = (x[n+ 1]−x[n])/1 we have
that

x[n+α] = x[n] +α(x[n+ 1]−x[n])

which coincides with the non-causal version of Eqn.(5.33). It should also be noted
that this approach can be used to define higher-order interpolation filters.

Fig. 5.30 shows the frequency and phase delay response of the expression (5.34) for
some values of the α fractional delay. The amplitude response is almost flat for small
α values. The linear interpolator “sounds good” when the signal is oversampled so
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Fig. 5.30 Frequency re-
sponse |H(ejω)| and phase
delay −arg{H(ejω)}/ω,
of the first order linear
interpolator h = [1−α α],
for fractional delay values
α from 0 to 1 step 0.1.
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that the signal spectrum is concentrated at low frequency while for values higher
than FD the interpolator behaves like a low-pass filter. In fact, although the linear
interpolation technique has a low computational cost, it has some drawbacks. Below
are some of them.

• Linearity distortion - The linear interpolator is a low-pass filter.
• Amplitude and phase modulation - The characteristic of the filter is time variance

and introduces an overall variation in signal level and phase.
• Aliasing - Interpolation, in general, can be considered as a non optimal sampling

rate conversion process.

5.6.2.2 Truncation and Causalization of the Ideal Impulse Response

A simple approximation of an ideal interpolator, is its causalized and truncated ver-
sion. As shown in Fig. 5.31, the fractional output x[n−D] is computed as a linear
combination of its previous and subsequent samples. Considering an M -length FDL,
the delayed sample is inside the M -length signal window starting from a given refer-
ence index M0 appropriately chosen, i.e. −M0 < D <M −M0− 1. For example, for
M0 =M/2−1, the output can be calculated as

x[n+α] =
M−M0−1∑
k=−M0

h[k−M0]x[n−k] =
M−1∑
k=0

h[k]x[n−M0 +k].

So, for a M -length filter we have

h[k] =
{
sinc(k−D), k ∈ [−M0, M +M0−1]
0, otherwise

(5.36)

Fig. 5.31 Fractional delay
FIR filter of length M . To
have a causal filter, you will
need to delay the output
of M −1−M0 samples.
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Note that the smallest error for a given filter length is obtained when the overall
delay D is placed around its group delay. Thus, for a linear phase FIR filter the
reference index M0 can be chosen around the group delay of the filter. For example,
given a M -length FIR filter an possible choice of the reference index is

M0 =


M

2 −1, for M even, and α ∈ [0, 1)
M −1

2 , for M odd, and α ∈ [−0.5, 0.5).
(5.37)
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As an example, Fig. 5.32 shows the impulse responses of a two FDL with M = 16 and
M = 17. According to Eqn. (5.37), for the even-length filter we haveM0 = 7, with this
choice, to have symmetry of the phase delay response (see Fig. 5.33), the fractional
part is chosen in the interval α= [0, 1); for the odd-length filter we have M0 = 8 and
with this choice, for symmetric phase delay response, the fractional part is chosen in
the interval α= [−0.5, 0.5).
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Fig. 5.32 Fractional delay FIR filters of length M = 16,17. In the upper a integer delay equal
to M0 = 7,8 is considered, so the filters impulse responses is a simple delayed unit. The related
sinc(·) function (dashed line) is null in correspondence of all the samples except for n = 0 where
it is equal to h[0] = 1. In the lower part is reported the impulse responses of the fractional delay
for α= 0.6,−0.4 and their related sinc(·) functions.

Remark 5.10. Observe that the frequency responses of even- and odd-length FIR
FDL filters are different. As you can see from Fig.5.33, the even-length FIR FDL filter
(M = 16) has a high ripple in the amplitude response (magnitude), while the phase
delays are quite smooth and with minimum low frequency error. The odd-length FIR
FDL filter (M =17) has complementary characteristics, a low ripple in the magnitude,
high ripple in the phase delay response and high error in the low frequencies.

For a better overview, in Fig. 5.34 are reported the 3D plot of the magnitude squared
error |Hid(ejω)−H(ejω)|2 and of the phase-delay squared error |α− τH(ejω)|2, eval-
uated for several even- and odd-length filters.

Finally, Fig. 5.35 shows the magnitude and delay of a FDL forM = 2. The reference
index M0 is M0 =M/2−1 and, with this reference the impulse sinc(n−D) response
is simply evaluated for n= 0 and n= 1 as

h[0] = sinc(α), and h[1] = sinc(1−α).
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Fig. 5.33 Magnitude and phase-delay α response, such that D = M0 +α, of even-length (left)
and odd-length (right) truncated sinc(·) FDL. Note that, for even length filter the phase delay is
symmetric respect to the delay 0.5, while for odd length respect 0.

Fig. 5.34 Mean squared
magnitude error and mean
squared phase-delay error
for even- and odd-length
FIR filters. a) For fixed
M = 4, as a function of
frequency and of the delay
M0 + [0,1). b) For even-
length filters M ∈ [2,16]
with fixed target delay
with α= 0.4, as a function
of ω/2π. c) For fixed M =
5. c) For fixed M = 5, as
a function of frequency
and of the delay M0 +
[−0.5,0.5). d) For odd-
length filters M ∈ [3,17]
with fixed target delay
with α= 0.4, as a function
of ω/2π.
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.

Moreover, forM = 2 the interpolator filter can be implemented as shown in Fig. 5.36.

5.6.2.3 Fractional Delay FIR Filter by Least Squares Approximation

Let E(ejω) =Hid(ejω)−H(ejω), be the difference between the desired response and
the filter response, denoted as error possimo procedere come esposto nel §4.2.2.2, by
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Fig. 5.35 Fractional delay
FIR filter of length M = 2
with h = [sinc(α) 1−
sinc(α)]T . a) The impulse
response filter and sinc
function (dashed line) for
α = 0.6. b) Magnitude
and phase delay for eleven
values of delay α.
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Fig. 5.36 Possible im-
plementation schema of a
fractional delay FIR filter
of length M = 2.
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placing Hid(ejω) = e−jωD and solving the normal equations as Eqn. (4.8). Moreover,
an improved WLS method for variable FD FIR filters design can be found in [37].

However, for the case of real implulse response it is not necessary the use of the
LS approximation by virtue of the following property.

Property 5.5. The impulse response of an FD FIR filter, evaluated by L2-norm error
minimization, i.e. (4.8), coincides with the ideal sinc(·) truncated response. That is

hLS = (FHF)−1FHd = sinc(n−D)|n=0,...,M−1.

Proof. For the Parseval relation the L2-norm error (4.5) can be expressed in time-
domain as

J(h) =
∞∑

n=−∞
|hid[n]−h[n]|2 =

∞∑
n=−∞

(
h2
id[n] +h2[n]−2hid[n]h[n]

)
(5.38)

where hid[n] =sinc(n−D). Since, by definition
∑∞
n=−∞ |hid[n]|2 = 1, for a M -length

FIR-filter Eqn. (5.38) can be written as

J(h) = 1 +
M−1∑
n=0

(
h2[n]−2h[n]sinc(n−D)

)
.

The optimal solution is for ∂J(h)
∂h → 0. Operating in scalar form, switching the deriva-

tion and sum operations, we can write
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hopt[n] ∴
M−1∑
n=0

∂
(
h2[n]−2h[n]sinc(n−D)

)
∂h[n] =

M−1∑
n=0

(2h[n]−2sinc(n−D))→ 0

that has a minimum point for

h[n] = sinc(n−D), n= 0, 1, ..., M −1.

ut

As in the standard FIR-filter design, to reduce the ripple (known as the Gibbs phe-
nomenon) of the interpolator filter, the ideal impulse response can be multiplied with
an appropriately shaped window w[k−D].

h[k] =
{
w[k−D]sinc(k−D), k ∈ [−M0, M +M0−1]
0, otherwise

(5.39)

where w[·] is the window-function which can have various shapes, triangular (or Han-
ning window), raised cosine (Hamming window), and so on [1]-[3].

Fig. 5.37 Magnitude
responses (left) and phase
delay curves (right) of a 25-
length FD FIR filter. In the
upper the simple truncated
ideal impulse response. In
the lower the ideal impulse
response multiplied by a
Chebyshev window. Note
that, the ripple decrease is
associated with a widening
of the filter transition
band.
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In Fig. 5.37 are reported the magnitude responses and the phase delays of a two
FIR filter multiplied with different window-function, when the desired fractional phase
delay varies from α = ±0.5 with a step of 0.1 [frac/sample]. From the figure we can
see that for a rectangular window (i.e. simple truncated sinc function), the amplitude
response has a certain ripple. Using a standard Chebyshev window, the ripple is
contained at very low values. However, the price paid for the ripple reduction is the
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widening of the filter transition band. Therefore, near the maximum (normalized)
frequency 0.5, there is a degradation of the filter response [1]-[3].

Remark 5.11. Observe that, as shown in the next paragraphs, very often in non
recursive filter interpolation, a FIR filter is used in the form of a linear on non-linear
interpolator (polynomial or spline type) or Lagrange quadratic law [28], [41] and [48].

5.6.3 Approximate All-Pass Solution
Widely used for its low computational complexity, another technique to realize the
FDL, is to use all-pass filters. Since the amplitude response is constant, we will not
have any frequency-dependent attenuation (property not assured with FIR filters).
The TF of an all-pass filter is of the type H(z) = z−NA(z−1)

A(z) (see Eqn. (5.11)), thus
th TF a first-order all-pass filter can be written as

H(z) = a+z−1

1 +az−1

where |a|< 1 for stability.

Fig. 5.38 Fractional delay
line with all-pass approxi-
mation.
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For filters of this type it is easy to verify that at low frequencies the following
approximation applies

arg
[
H(ejω)

]
≈− sin(ω)

a+ cos(ω) + asin(ω)
1 +acos(ω) ≈−ω

1−a
1 +a

for group τg(ω) and phase τp(ω) delays for ω→ 0, results

τg(ω)≈ τp(ω)≈ 1−a
1 +a

.

Given by definition α= τg(0), the filter coefficient can be determined on the basis of
the desired delay at low frequencies such as

a= 1− τg(ω)
1 + τg(ω)

∣∣∣∣
ω→0

= 1−α
1 +α

. (5.40)
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With this approximation the group delay is constant, with good approximation, up
to fs/5 [5]. 
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Fig. 5.39 First or-
der all-pass interpola-
tor. Magnitude response
|H(ejω)| and phase delay
−arg{H(ejω)}/ω, of the
first order all-pass interpo-
lator a = [α 1], b = [1 α]
for fractional delay values
α from 0 to 1 step 0.1.

In this case the fractional delay line scheme is the one shown in Fig. 5.38 where the
whole part of the delay (Di− 1) is performed with a normal DL and the fractional
part is relegated to the all-pass filter.

The input-output relation results to be

y[n] = ax[n] +x[n−1]−ay[n−1]

The frequency response of an all-pass filteis flat by definition. As with the linear
interpolator, the all-pass has some acoustic drawbacks. Typically, However, for low α
values, the all-pass structure sound better than the linear interpolator.

5.6.3.1 Reduced Transient Response

The use of recursive structures (such as the all-pass) must be done very carefully as
they may give rise to annoying transients due to the unlimited filter impulse response.
In fact, due to recurrent nature, unlike in the FIR case, in the allpass interpolation,
interpolated values cannot be requested arbitrarily at any time in isolation or “random
access mode” [60].

Fig. 5.40 Impulse re-
sponse of an all-pass filter
for α = 0.15. The TF
is H(z) = a+z−1

1+az−1 with
a = 0.7391. a) Pole-zeros
diagram. b) Impluse re-
sposnse.
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Moreover note that, as Fig. 5.40 shown, for α→0 the impulse response of the
all-pass filter is quite long. This results in nonlinear-phase distortion at frequencies
close to half the sampling rate. This phenomenon produces a disturbance that is
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particularly audible when using low sample rates (e.g. fs <44.1kHz) often used in
low-cost devices. In audio applications, therefore, we would like to keep the impulse
response duration short enough to sound instantaneous. Since the decay time constant
of the impulse response of a pole of radius a is about τ ≈ 1

1−a [69], and since a 60-dB
decay occurs in about 7τ , we can limit the pole of the allpass filter to achieve any
prescribed specification on maximum impulse-response duration [60].

5.6.3.2 Thiran All-Pass Fractional Delay Filter

The Thiran all-pass filter has a TF (5.11) where the denominator coefficients ak, are
defined by the following formula [30].

Fig. 5.41 Thiran all-pas
filter order N=10. (Upper)
Magnitude and phase-
delay. (Lower) Impulse re-
sponse and poles-zeros plot
for α = 0.4. Note that the
FDL’s delay performance
are poor for f > 0.3(fs/2).
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Thiran All-pass poles-zeros N = 10, =0.50

ak = (−1)k N !
k!(N −k)!

N∏
n=0

N −n−D
N −k−n−D

, k = 0,1,2, . . . ,N. (5.41)

Thiran allpass filters have unity gain at all frequencies and they produce a maximally
flat group delay response at ω→ 0. As illustrated in Fig. 5.41, performance is optimal
at DC but poor close to the Nyquist frequency. Also note that the impulsive response
is relatively short so it can be used in time-varying situations.

5.6.4 Polynomial Interpolation
The theoretical development of the methods described below is performed considering
a continuous signal x(t), defined in the interval t ∈ [t0, tN ], and known only in a finite
set of N +1 samples x(tk), k = 0, 1, ..., N . The problem is the reconstruction of the
whole waveform x(t) in t∈ [t0, tN ] starting only from the knowledge of N+1 samples.
The estimation of the signal is done by means of an interpolating function Φ(t,∆t)
which, in general, depends on the time t and the choice of the sampling interval t.
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If the N+1 known samples of the signal are not uniformly spaced, the interpolating
function should be evaluated for each tk sample. Given x̂(t) the signal estimate x(t),
we have

x̂(t) =
N∑
k=0

Φk(t,∆tk)x(tk).

If a specific interpolating function (e.g. polynomial, B-spline, etc.) is considered, the
previous expression can be rewritten in the convolution form as

x̂(t) =
N∑
k=0

h(t, tk)x(tk) (5.42)

which has a form that is equivalent to a time-varying FIR filter.
In case the samples are uniformly spaced, the function Φk(t,∆t) is the same for all

the sampling intervals, and we can simply write

x̂(t) =
N∑
k=0

Φk(t)x(tk).

In this case, regardless of the chosen interpolating function, it is possible to determine
a time-invarinat FIR filter that implements the FDL, also called fractional delay filter,
of the type

x̂(t) =
N∑
k=0

h(tk)x(t− tk). (5.43)

Now let’s consider the case in which the signal is a sequence derived from the x(t)
signal by means of a sampling done in instants tn = nT (with a constant T sampling
period and, for simplicity, T = 1) for which

x[n] = x(t)|t=nT , n ∈ [0, N ] (5.44)

Said x[n+α], with 0 ≤ α < 1, the signal value at any point between two successive
samples n and (n+ 1), the Eqn. (5.43) can be written as

x[n+α] =
N∑
k=0

h[k]x[n−k] (5.45)

i.e. a simple FIR filter.

5.6.4.1 Interpolation with Polynomial FIR Filter

In the first method, proposed in [33], we analyze the interpolating function Φ(t)
is realized with a polynomial of order N . The methodology derives considering a
polynomial pN (x) of order N able to represent exactly an x(t) function in a set of
uniformly spaced N + 1 samples.

Let us consider a polynomial,
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x(t) = a0 +a1t+a2t
2 + · · ·+aN t

N =
N∑
k=0

akt
k (5.46)

which passes in (N + 1) points (tn,xn) with n = 0, 1, ..., N .

Fig. 5.42 Example of
interpolating polynomial
filter. a) Order N = 2. a)
Order N = 4.
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The above expression can be seen as a set of linear equations of the type Ta = x
where T is a Vandermonde matrix. Explicitly we have that

1 t0 t20 · · · t20
1 t1 t21 · · ·
...

...
...

...
1 tN t2N · · · tNN



a0
a1
...
aN

=


x0
x1
...
xN

 (5.47)

where polynomial coefficients ai are computed as a = T−1x.
If we consider a sequence x[n], and II order interpolator x(t) = a0 +a1t+a2t

2, for
t= n, as shown in Fig. 5.42-a), we have that the points where the polynomial passes
are (n−1,x[n−1]),(n,x[n]) and (n+ 1,x[n+ 1]). Therefore, the equations system to
determine the ak coefficients is

x[n−1] = a0 +a1(n−1) +a2(n−1)2

x[n] = a0 +a1n+a2n
2

x[n+ 1] = a0 +a1(n+ 1) +a2(n+ 1)2
(5.48)

that in matrix form can be written as1 (n−1) (n−1)2

1 n n2

1 (n+ 1) (n+ 1)2

a0
a1
a2

=

x[n−1]
x[n]

x[n+ 1]

 (5.49)

The system (5.49) can be symbolically solved, so we have



5.6 Fractional Delay-Lines 261

a0
a1
a2

=

 n(n+1)
2 1−n2 n(n−1)

2
− (2n+1)

2 2n − (2n−1)
21

2 −1 1
2


x[n−1]

x[n]
x[n+ 1]

 .
Once the coefficients of the polynomial ak have been determined, the sample interpo-
lated at the instant (n+α), with α < 1, is calculated by evaluating the Eqn. (5.46)
for t= (n+α). Therefore it is equal to

x[n+α] =
N∑
k=0

ait
k

∣∣∣∣∣
t=(n+α)

= a0 +a1(n+α) +a2(n+α)2. (5.50)

Remark 5.12. Note that, it can be useful to express the sample with fractional delay
as a function of the neighboring samples x[n+α] =F (x[n−1],x[n]). This can be easily
obtained by combining (5.50) with (5.48). It follows a linear relationship and that the
sample x[n+α] can be seen as the output of a second-order FIR filter, i.e. with three
coefficients, of the form in Eqn. (5.45)

x[n+α] = c−1x[n−1] + c0x[n] + c1x[n+ 1]

where

c−1 = 1
2α(α−1), c0 =−(α+ 1)(α−1), c1 = 1

2α(α+ 1) (5.51)
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Fig. 5.43 Implementation scheme of interpolating polynomial filter. a) Order N = 2. a) Order
N = 4.

Remark 5.13. Observe that, the FIR filter coefficients c−1, c0 and c1 are time-
invariant and depend only on the delay α. If the sampling interval is not constant
this would no longer be true and the filter coefficients should be recalculated for each
sample.

In general, the determination of the x[n+α] can be expressed as

x[n+α] =
N/2∑

k=−N/2
ck(α)x[n−k]. (5.52)
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For example, for N = 4 we have that

c−2 = 1
24(α+ 1)α(α−1)(α−2)

c−1 =−1
6(α+ 2)α(α−1)(α−2)

c0 = 1
4(α+ 2)(α+ 1)(α−1)(α−2)

c1 =−1
6(α+ 2)α(α+ 1)(α−2)

c2 = 1
24(α+ 2)α(α+ 1)(α−1)

(5.53)

The filter implementation structure is shown in Fig. 5.43. Similar expressions can be
found for polynomial orders higher than N = 2M . In general we can write

ck = 1
(−1)M−k(M +k)!(M −k)!

M∏
n=−M
n6=k

(α−n), k =−M, ..., M. (5.54)

5.6.4.2 Lagrange Polynomial Interpolation Filter

The problem of determining the sample value at a fractional delay x[n+α], with a
polynomial approximation, where the polynomial coefficients are determined by Eqn.
(5.54), can be reintroduced from different assumptions.

The Lagrange polynomial interpolation method, originates from considering a N -
order polynomial that can represent exactly one function x(t) in a set of N+1 samples
ti. In this case, however, it is a priori required that the polynomial assumes zero value
except at a specific point. The polynomial characterized by this behavior is called
Lagrange’s polynomial (LP) . 
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Fig. 5.44 Lagrangre
polynomials (LPs). The
assumption is that the
polynomial takes zero val-
ues at the sampling point
except in the sample of
interest.

The Lagrange polynomial of orderN , related to the i-th sample, indicated as lNi (x),
is defined as

lNi (x) = δik =
{

1, i= k
0, otherwise.

The LP, as shown in Fig. 5.44, is characterized by N zeros in positions t0, t1, ... while
at the i-th value x(ti) = 1 applies. In numerical transmission jargon, this condition
guarantees the absence of intersymbolic distortion. The basic idea in the use of the
Lagrange polynomial is therefore to force to zero the impulsive response of the in-
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terpolator filter in correspondence of the neighbouring samples so as to reduce the
effects of intersymbolic distortion.

From the LP’s zeros it is easy to verify that this can be written as

lNi (x) = ai(t− t0) · · ·(t− ti−1)(t− ti+1) · · ·(t− tN ) (5.55)

from the previous expression for lNi (x) = 1 , the ai coefficients are calculated as

ai = 1
(t− t0) · · ·(t− ti−1)(t− ti+1) · · ·(t− tN ) .

Considering all the signal sampling points, the shape of the overall interpolator is the
sum of the LPs related to all the N+1 points each of which is multiplied by the value
of the function in that point

pN (x) =
N∑
i=0

lNi (x)x(ti) = lN0 (x)x(t0) + lN1 (x)x(t1) + · · ·+ lNN (x)x(tN ). (5.56)

By setting a=
∏N
j=0 (t− tj) the (5.55) can be rewritten as

lNi (x) = ai
a

t− ti
= 1∏N

j=0,j 6=i (ti− tj)

∏N
j=0 (t− tj)
t− ti

=
N∏

j=0,j 6=i

t− ti
ti− tj

(5.57)

additionally, in the case of uniformly spaced samples, by placing ti = t0 + i∆t and
tj = t0 + j∆t; (i, j integer) and defining a new variable α < 1 such that t = t0 +α∆t
we have that

t− ti
ti− tj

= t0 +α∆t− t0− i∆t
t0 + i∆t− t0− j∆t

= α− i
i− j

and the expression (5.57) can be rewritten as

lNi (x) =
N∏

j=0,j 6=i

α− j
i− j

(5.58)

here denoted as Lagrange interpolation filter (LIF), where only sampling points ap-
pear. Note that the above expression is identical to (5.54) obtained by simple poly-
nomial regression model.

Let’s consider as usual numerical sequence where the available samples are uni-
formly spaced n = tn, the interpolator output (5.56) can be calculated as a simple
convolution

x[n+α] =
N∑
k=0

h[n]x[n−k], where h[k] = lNk (α). (5.59)

It should be noted that this expression is similar to that seen above (5.52). In fact,
in the case of uniform sampling the (5.59) would take the form of an FIR filter with
constant coefficients that depend only on the value of the fractional delay.
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Finally, as D =Di+α where Di ∈ Z+ is fixed, in Eqn. (5.58), in order to consider
only the adjustable fractional delay α ∈R, we have two null-phase version alternative
for the interval [0,N ]. A common choice for even and odd order is

Nsup = N

2 , Ninf =−Nsup, α ∈
[
−1

2 ,
1
2

)
N -even

Nsup = N + 1
2 , Ninf =−N −1

2 , α ∈ [0, 1) N -odd
(5.60)

In fact, as previously explained in Fig. 5.32 and Fig. 5.33, for optimal performance, the
fractional delay should be positioned approximately halfway along the filter length.
So, in case of odd order we can also choose Nsup = N−1

2 and Ninf =−N+1
2 .

Fig. 5.45 Example of
MATLAB code for La-
grange interpolation filter
(LIF) coefficients determi-
nation in Eqn. (5.61).

 function h = coeff_L(N, delay) 
% ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
%  Returns (N + 1) taps of Lagrange interpolator FIR 
%  filter which implements a fractional delay‐line. 
% ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
    if mod(N,2) == 0      
        Nsup = N/2; Ninf = ‐Nsup; 
    else   
        Nsup = (N + 1)/2;  Ninf =  ‐(N ‐ 1)/2; 
    end 
    n = 0; 
    for i = Ninf : Nsup 
        n = n + 1; 
        for j = Ninf : Nsup 
            if (i~=j) h(n) = h(n) * (delay ‐ j)/(i ‐ j); end 
        end 
    end 
end 
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Fig. 5.46 Example of LIF
magnitude and phase delay
responses of even (N = 4),
and odd orders (N = 5)
Lagrange interpolation
filters Eqn. (5.61).

Thus, Eqn. (5.58) can be rewritten as

h[n] = lNn (x) =
Nsup∏

j=Ninf ,j 6=n

α− j
n− j

(5.61)
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So, considering the implementation using Eqn. (5.58) the argument is the ovarall
delay Di+α, while with the null-phase expressions (5.61)), the argument is the only
fractional part of the delay α.

In Fig. (5.45) an example of MATLAB code that implements the Eqn. (5.61); while
Fig. 5.46 shown the magnitude and phase delay responses of even and odd orders
Lagrange interpolation filters designed with Eqn. (5.61).

For example for N =2, using Eqn. (5.61) we will have

h[−1] =
1∏

j=−1,j 6=−1

α− j
−1− j = 1

2α(α−1)

h[0] =
1∏

j=−1,j 6=0

α− j
0− j =−(α−1)(α+ 1) = 1−α2

h[1] =
1∏

j=−1,j 6=1

α− j
1− j = 1

2α(α+ 1).

It can be seen that this result is identical to that determined by the polynomial
method described above (5.51).

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.47 Ideal interpola-
tion with Nyquist filter: the
dashed samples represent
the interpolated signal.
The filter impulse response
is zero in correspondence
with the samples adjacent
to the one to which it
refers.

Remark 5.14. The Lagrange polynomial behaviour is similar to that of the ideal
interpolator filter realized by Nyquist’s low-pass filter in Eqn. (5.31). This, in fact,
has a null impulse response in correspondence of all the signal samples except for the
i-th reference sample (see Fig.s 5.48 and 5.47).

The following Theorem is also valid.
Theorem 5.1. For an infinite number of equally spaced samples tk+1− tk = ∆, the
Lagrange polynomial base converges to the sinc(·) function of type

lk(x) = sinc
(
x−k∆

∆

)
, k = ...,−2,−1,0,1,2, ... .

Proof. Each analytical function is determined by its zeros and value at a point other
than zero. Since the function sin(πx) is zero for x integer except zero, and since the
function sinc(0) =1, it coincides with the Lagrange polynomial base for k→∞ and
k = 0. ut
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However note that, as shown in Fig. 5.48, for finite length filter, the Lagrange solution
in Eqn. (5.58) can also be obtained the windowing method where the window coef-
ficients are computed using the binomial formula. For more detail on the connection
between the sinc(·) function and the Lagrange interpolation refere to [67], [73]-[75].

Fig. 5.48 Comparison
of LD{sinc(n−α)} (or LS
solution) FIR filter impulse
response and the LIF
lNn (x), evaluated with Eqn.
(5.61), for N = 8, for fixed
delay α= 0.4. For N →∞
⇒ {lNn (α)→sinc(n−α) }
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Fig. 5.49 shows the amplitude and phase delay responses for two polynomial filters.
The Lagrange polynomial coefficients are evaluated with Eqn. (5.61). It can be ob-
served that compared to the sinc(·) interpolator with the same order (see Fig. 5.33),
the responses are much smoother.

xSINC_PL_DL_FIR.m 
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Fig. 5.49 Magnitude and phase-delay response of odd-order (left) and even-order (right) La-
grange polynomial interpolator. The polynomianl coefficients are evaluated with with Eqn. (5.61).

In Fig. 5.50 are reported the magnitude and phase-delay response of even- and
odd-order Lagrange interpolating filter for fixed dealy α= 0.4.

The Lagrange polynomial interpolation, is widely used in practice because:
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Fig. 5.50 Magnitude and
phase-delay response of
Lagrange interpolating
filter for fixed dealy α =
0.4. The continuous lines
are related to polynomials
with even orders, while the
dashed lines to the odd
ones.
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1. no need for feedback, i.e. is implemented with a FIR filter;
2. the coefficients of the filter are easily calculable with an explicit formula that

allows a simple implementability also in real time.
3. it has a maxflat frequency response the maximum of the magnitude response never

exceeds unity.

Remark 5.15. Note that especially for low polynomial orders, LIF has optimal be-
havior up to a fraction of the Nyquist frequency. One possible approach to limit the
error at high frequencies is to insert an upsampling block bringing the signal to a
frequency L times higher than the input frequency. Usually a multiphase network
is used that can be interpreted as as a fractional delay filter followed by an L-fold
decimation actually evaluates only every L-th sample of the oversampled signal [31],
[36].

5.6.4.3 Cubic B-Spline Interpolation

A methodology that guarantees more control possibilities, better performance and
lower computational cost is based on the replacement of the Lagrange polynomial with
a B-spline interpolator as proposed in [45]. The disadvantage of the B-spline method
is a distortion of the spectrum of the interpolator filter which can, however, be easily
pre-compensated with a simple equalizer to be put before the B-spline interpolator.

The theoretical development of the method is done as in the case of the polynomial
interpolators seen above where the signal (at first supposed continuous) x(t), t ∈
[t0, tN ] is evaluated by the knowledge of N + 1 samples x(tk), k = 0, 1, ..., N ; with
the interpolating B-spline function Φ(t) such that x̂(t) =

∑N
k=0 Φk(t)x(tk).

Suppose we know the N + 1 samples of a x(t) signal in the range [x(tk), x(tk+1),
..., x(tk+N )]. The B-spline function of order N is defined as [4], [45].

ΦNk (t) =
k+N+1∑
i=k

(t− ti)N+∏N+1
j=0,i6=j (ti− tj)

(5.62)

where
(t− ti)N+ =

{
(t− ti)N t≥ ti

0 t < ti.
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The interpolator filter coefficients can be determined by evaluating the expression
(5.62) for a generic delay by placing, in the case of uniformly spaced samples, ti =
t0 + i∆t e ; (i, j integer) and defining a new variable α < 1 such that t= t0 +α∆t we
have that

ΦNk (α) =
k+N+1∑
i=k

(α− i)N+∏N+1
i=0,i6=k (i− j)

.

Since the ΦNk (t) function decreases as N increases, a normalized version of it is usually
used defined as

NN
k (t) = (tk+N+1− tk)ΦNk (t)

then

NN
k (α) = (N + 1)

k+N+1∑
i=k

(α− i)N+∏N+1
i=0,i6=k (i− j)

. (5.63)

The calculation of the previous expression for N =2 produces the following coefficients
of the interpolating FIR filter

N2
3 (α) = h(0) =−1

2α
2

N2
2 (α) = h(1) =−1

2(1 +α)2 + 3
2α

2

N2
1 (α) = h(2) =−1

2(1−α)2.

For N =3 produces the following interpolating FIR filter coefficients

N3
3 (α) = h(0) = 1

6α
3

N3
2 (α) = h(1) = 1

6(1 +α)3− 2
3α

3

N3
1 (α) = h(2) = 1

6(2−α)3− 2
3(1−α)3

N3
0 (α) = h(3) = 1

6(1−α)3.

Fig. 5.51 shows a comparison od a 3rd (N = 3) FDLs.
For N =6 you can prove that the Φ(t) = (sin(t)/t)7. In fact, B-spline functions can

be obtained by means of repeated convolutions of rectangular impulses.

Remark 5.16. The choice of the type of interpolation depends on the type of ap-
plication. In general terms Rocchesso in [48] defined three properties that should be
met:

• flat frequency response;
• linear phase response;
• the delay-times variation does not give rise to audible transient.
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Fig. 5.51 Comparison
of magnitude and phase-
delay response of 3rd order
FDLs.

It is clear that these properties are contradictory. For example an all-pass interpolator
satisfies the 1) but not the 2) for an extended frequency range. The type of approx-
imation choice for our application may not be easy. For more information on this,
please refer to the literature in particular Laakso et al [28], Dattorro [46], Rocchesso
[48], Smith [60] and Bhandari et al [68].

5.6.5 Time-Variant Delay Lines
In irrational sample rate conversion and in many digital audio effects, some of which
will be described in later chapters, are based on the use of time-varying delay lines
(TVDLs), i.e. delay D, or is fractional part α, is itself a time function. You therefore
have

y[n] = x [n−D[n]] . (5.64)

In general it may be convenient to express the variable delay over time as

D[n] =D0 +D1fD[n] =D0 (1 +mDfD[n]) (5.65)

where D0 represents the nominal length of the DL, the function fD[n], generally with
null mean value, represents the variation law (or modulation type) and the constant
mD ∈ [0, 1] represents the modulation index.

Fig. 5.52 Time-variant
delay line (TVDL) a)
General schema of DL
with delay with variable
length. b) TVDL structure
with interpolator filter.
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The obtained effect depends on the variation law fD[n] and its modulation depth
D1 = mDD0 (see Figure 7.30). In general the D[n] value is not integer and must be
interpolated with one of the techniques described in the previous paragraph.

Fig. 5.53 shows, as an example, the implementation in C++ of the Synthesis Tool
Kit [61], an FD with linear interpolation.

Fig. 5.53 Possible im-
plementation in C++ of
a delay line with variable
length and fractional delay
with linear interpolator.
(Courtesy of [61]).  

   static double A[N];
   static double *rptr  =  A; // read ptr 
   static double *wptr  =  A; // write ptr 
 
   double setdelay(int M) { 
       rptr  =  wptr - M; 
       while (rptr < A) { rptr + =  N } 
   } 
 
   double delayline(double x) 
   { 
     double y; 
     A[wptr++]  =  x;  
     long rpi  =  (long)floor(rptr); 
     double a  =  rptr - (double)rpi; 
     y  =  a * A[rpi] + (1-a) * A[rpi+1]; 
     rptr + =  1; 
     if ((wptr-A) > =  N) { wptr - =  N } 
     if ((rptr-A) > =  N) { rptr - =  N } 
     return y; 
   } 

5.6.6 Arbitrary Sampling Rate Conversion
The conversion between two arbitrary sampling frequencies, including the cases in
which the ratio is an integer, rational or irrational, is of central importance in many
DASP applications. In all the situations described the conversion problem consists in
determining a new signal sample placed between two samples of the original signal by
means of an interpolation or extrapolation process. Thus the problem can be solved
by a time-varing delay line where the variation concern only the fractional part i.e.
α→α(n) where, depending on the used technique [−0.5<α(n)< 0.5] or [0<α(n)< 1]
(less than a fixed systematic integer delay).

In a more general form the problem of interpolation and extrapolation must be
understood as a method to interface two signals with any sampling frequencies, even
with irrational ratio.

An intuitive way to understand the convertion with irrational ratio, is to convert
the signal back to analog and then resample it to the desired frequency. This pro-
cedure, even if theoretically consistent, is not practically feasible since it should be
implemented with a dedicated and almost non-programmable hardware structure; fur-
thermore, the conversion processes would still produce a series of artifacts, distortions,
noise, etc. inherent in the A/D - D/A conversion.

In online audio applications, the ADC - DAC process is simulated using appropriate
approximate interpolation scheme as polynomials or splines. In this case the rational
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interpolation process can be seen as a cyclic time-varying filtering process in which
the filter coefficients are calculated at each sample of the input signal [33]-[42].

Remark 5.17. Observe that, in arbitrary sampling rate conversion the converted
sample is a function of the known neighboring samples so, as illustrated in Fig. 5.54,
for each new sample the fractional part and the relative interpolator filter must be
recalculated. In real time applications, it is therefore necessary to have efficient algo-
rithms both for the calculation of the filter coefficients and for the filtering operation.

Fig. 5.54 Arbitrary sam-
pling rate conversion. a)
Example of dawn-sampling
Ts1→ Ts2, with Ts2 > Ts1.
b) Possible simple imple-
menation algorithm.
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The design of the interpolator filter is quite critical. In the previous paragraph we
have seen that for the correct definition of the group delay on the whole band, there
is a bandwidth restriction and vice-versa.

Fig. 5.55 shows an example of conversion, using different order Lagrange polyno-
mial and all-pass techniques, from a sample frequency of 48kHz to 44.1kHz. In order to
define a qualitative metric evaluation, the input signal consists of six sine waves cen-
tered at 20Hz, 200Hz, 1kHz, 10kHz, 15kHz and 20kHz, to cover a large portion of the
spectrum at the maximum amplitude allowed (0dB). From the figure we can observe
that all techniques produce artifacts especially at the higher frequencies (>10kHz in
this case). As we could have expected from the discussion in the previous paragraphs,
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Fig. 5.55 Example of irrational signal sample-rate conversion from 48kHz to 44.1kHz, very com-
mon in audio applications. In the upper part is reported 2ms of the time-domain signal. In the
lower part the magnitude spectrum of the original signal end the signal converted using different
interpolator filters.
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the worst result is that of the all-pass interpolator. The artifacts produced by the
Lagrange filter of order 32, are all below −60 dB, therefore, with inaudible effects.

Remark 5.18. Note that, the computational cost of an N -order Lagrange intropola-
tor is equal to the standard cost of the FIR filter: N+1-multiplications + N -additions
× sample; to which the cost for the calculation of the filter parameters must be added.
If we use the expression (5.58) to calculate the parameters we should add more N -
multiplications + 2N -additions × sample.

Fig. 5.56 Spectra of con-
verted signals with ir-
rational sampling rate
using preloaded interpo-
lation filters on different
length LUTs. (Upper)
down-sampled from 48kHz
to 44.1kHz. (Lower) up-
sampled from 44.1kHz to
48kHz.
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Arbitrary conversion between sampling rates and its efficient implementation is a
central theme in the DASP. For improved computational efficiency in [73], it has been
proposed to store interpolator filter coefficients on an LUT, for a sufficient number
of fractional delays αk. This method is commonly used in closely related sample rate
conversion problems.

By the way, in Fig. 5.56 are reported the results of the re-sampling process with
Lagrange filters stored in LUTs of different lengths. The experiment was performed
with the same signal in Fig. 5.55. From the figure we can observe that with a LUT with
256 pre-memorized coefficients produces a result very similar to that with run-time
calculated filters.

5.6.7 Robust Fractional Delay FIR Filter
The implementation of time-variant FDL FIR, can have some critical issues when
updating the filter status. In DASP, in particular, it can lead to audible and annoying
artefacts. So sometimes, as seen also in the case of equalizers (see §4.5), it is convenient
to use robust architectures in general at the expense of a computational overhead.

5.6.7.1 The Farrow’s Structure

In order to make the system more robust, Farrow in [32] proposes to use a parallel
filter bank a priori determined and kept fixed and, as indicated in Fig. 5.57, the
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D=Di+α parameter that regulates delay, can be placed outside the fixed filter bank
[27]-[32].

The fixed filter bank, can therefore be realized with very robust and efficient circuit
structures, especially in case you want to realize a dedicated hardware [33]-[40].

Let hD[n], the filter impulse response of the interpolation filter relate to the delay
D, Farrow in [32], proposed to approximate each impulse response with a M -order
polynomial of the type

hD[n] =
M∑
m=0

cm,nD
m, n= 0, 1, ..., N (5.66)

where M is the order of the polynomials. The TF of the above expression can be
written as

HD(z) =
N∑
n=0

M∑
m=0

cm,nD
mzn =

M∑
m=0

(
N∑
n=0

cm,nz
n

)
Dm =

M∑
m=0

Cm(z)Dm (5.67)

where Cm(z), are the fixed TFs of a parallel FIR filters bank.

Property 5.6. For exact Lagrange interpolation of orderN , the order of the subfilters
Cm(z) must equal to N (see for example [29]). The resulting Farrow’s structure shown
in Fig. 5.57, comes from the rewriting of the polynomial (5.67) with Horner’s method.
So it results

HD(z) = C0(z) + [C1(z) + [C2(z) + · · ·+ [CN−1(z) +CN (z)D]D · · · ]D︸ ︷︷ ︸
N

. (5.68)

As for Lagrange polynomial interpolation, a common choice for the delay is Di =N/2
and α ∈ [−0.5,0.5).

   

( )NC z 1( )NC z 2 ( )C z 1( )C z 0 1C 

[ ]x n

[ ]y nD D D D
D

Fig. 5.57 Interpolation
by the Farrow structure
basis filter. The only vari-
able parameter is external
to the TF’s filters-bank so
the structure is robust.

The consistency of Farrow’s method can be demonstrated by the computability of
bank TFs Cm(z).

5.6.7.2 LS Computation of the Farrow’s Sub-Filters Coefficients

The Farrow structure, consists of bank of N -filters each withM parameters and, given
the high order of degrees of freedom, the determination of the Cm(z) sub-filters, which
approximates a desired response, indicated as D, can be done in several ways.
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Here, the determination of the solution is done by minimizing a given cost function
(CF) with the least squares (LS) criterion. For the formulation of the CF the following
definitions and assumptions are considered.

First of all, we write the (5.66) as the following scalar product

hD = vTDC

where vD ∈ R(M+1)×1 = [1 D D2 · · · DM ]T is the vector of delays, and C ∈
R(M+1)×(N+1) is the matrix of overall polynomial coefficients of the filter bank that
represents the FDL impulse response hD.

By choosing a set of values D0 D1 ..., DL, usually uniformly spaced, where we want
to approximate the desired response of the bank, indicated as D ∈R(L+1)×(N+1) and
related to these values, we can write the CF as

J(H) = ‖D−VDC‖2

where the matrix VD ∈ R(L+1)×(M+1) = [vTD0
vTD1

· · · vTDL ]T contains the grid of
delays. Being the quadratic cost function, the optimal solution is unique. By setting
its gradient to zero you get the following normal equations

VDC = D

left multiply both members by VT
D and solving w.r.t. C, the optimal LS solution is

CLS =
(
VT
DVD

)−1
VT
DD.

The above solution is general for M <N and L >N .

5.6.7.3 Computation of the Farrow’s Sub-Filters Coefficients

Following a simpler and more direct approach, as proposed by Välimäki in [27] and
reconsidered in [35], the determination of the coefficients cm,n of the TF Cm(z), can
be done by imposing equality of the overall Farrow TF and a target TF T (z). If the
output is a D-delayed version of the input the desired relation is T (z) = Y (z)

X(z) = z−D.
So, for Eqn. (5.67), and imposing this condition for various delays bn, for n=0,1, ...;
which for simplicity we consider integers we have that

HD(z) ∴ argmin
cm,n∈R

∥∥∥∥∥
N∑
m=0

Cm(z)bmn −z−bn
∥∥∥∥∥ , bn = 0, 1, ... (5.69)

where {bn} can be the set of the natural numbers. Thus, for simplicity, considering
N + 1 relations as bn = 0, 1, ..., N , and writing the Eqn. (5.69) extensively we get
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c0,000 + c0,101 + · · ·+ c0,N0N = z−0

c1,010 + c1,111 + · · ·+ c1,N1N = z−1

...
cN,0N

0 + cN,1N
1 + · · ·+ cN,NN

N = z−N

(5.70)

i.e. a set of N + 1 equations that in matrix form can be written as

CV = Z

where V is a Vandermonde matrix defined as

V =


1 0 0 · · · 0
1 1 1 · · · 1
1 2 4 · · · 2N
...

...
... . . . ...

1 N N2 · · · NN


and Z = diag(1 z−1 · · · z−N ) is the matrix of delay such that the coefficients cm,n of
the TF Cm(z) can be determined as

C = ZQ

where Q = V−1 indicate the inverse of the Vandermonde matrix V. In other words,
as z represents the delay elements in z-domain, according with the above equation,
the TFs Cm(z) are obtained as the following scalar product

Cm(z) = q(m)z, m= 0, 1, ..., N (5.71)

where with q(m) indicate the raw of the matrix Q.
For example, for N = 4 we have that

V =


1 0 0 0 0
1 1 1 1 1
1 2 4 8 16
1 3 9 27 81
1 4 16 64 256

 , Q = V−1 = 1
24


24 0 0 0 0
−50 96 −72 32 −6

35 −104 114 −56 11
−10 36 −48 28 −6

1 −4 6 4 1


so, the Farrow’s TFs are

C0(z) = 1
C1(z) =−25

12 + 4z−1−3z−2 + 4
3z
−3− 1

4z
−4

C2(z) = 35
24 −

13
2 z
−1 + 19

4 z
−2− 7

3z
−3 + 11

24z
−4

C3(z) =− 5
12 + 3

2z
−1−2z−2 + 7

6z
−3− 1

4z
−4

C4(z) = 1
24 −

1
6z
−1 + 1

4z
−2− 1

6z
−3 + 1

24z
−4

while the entire TF of the Farrow structure is
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HD(z) = C0(z) + [C1(z) + [C2(z) + [C3(z) +C4(z)D]D]D]D.

To consider the fractional part only, we remove the integer part Di. So, you need to
properly transform the matrix Q as

C = TQ

where T is a transformation matrix defined as

TT
j,k =

M
j−k · j!

j!(j−k)! , for j ≥ k

0, for j < k

, where M =


N

2 , N -even
N −1

2 , N -odd.

This transformation is equivalent to substituting D′ =D−1.

Fig. 5.58 Example of
MATLAB code for Farrow
sub-filters specifications.
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[ ]x n

[ ]y nD D D D
D

function [C, V, Q, T] = Farrow_TF(N) 
    if isodd(N), M =  (N‐1)/2; 
    else M = N/2,  end 
    for m=0:N 

 for n=0:N 
  V(m+1,n+1) = m^n; 
  if n>=m 
      T(m+1,n+1) = M^(n‐m)*nchoosek(n,m) ;  
  end 

 end 
    end 
    Q = inv(V); 
    C = T*Q ; 
end 

function h = Farrow_imp_resp(C, alpha) 
    M = length(C(1,:)); 
    N = M ‐ 1; 
    x = zeros(M,1); 
    x(1) = 1; 
    h = alpha*conv(C(N+1,:), x); 
    for i= N : ‐1 : 1 

 h = alpha*h + conv(C(i,:), x ); 
    end 
end 

For example for N = 3 and N = 4 we have

T(3) =

[
1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1

]
, C(3) =

1

6

[
0 6 0 0

−2 −3 6 −1
3 −6 3 1

−1 3 −3 1

]
; T(4) =

[
1 2 4 8 16
0 1 4 12 32
0 0 1 6 24
0 0 0 1 8
0 0 0 0 1

]
, C(4) =

1

24

[
0 0 24 0 0
2 −16 0 16 −2

−1 16 −30 16 −1
−2 4 0 −4 2

1 −4 6 −4 1

]
.

Thus the shifted Farrows sub-filters TFs, respectively, are

C
(3)
0 (z) = z−1

C
(3)
1 (z) =− 1

3 −
1
2z
−1 +z−2− 1

6z
−3

C
(3)
2 (z) = 1

2 −z
−1 + 1

2z
−2 + 1

6z
−3

C
(3)
3 (z) =− 1

6 + 1
2z
−1− 1

2z
−2 + 1

6z
−3

,

C
(4)
0 (z) = z−2

C
(4)
1 (z) = 1

12 −
2
3z
−1 + 2

3z
−3− 1

12z
−4

C
(4)
2 (z) =− 1

24 + 2
3z
−1− 15

12z
−2 + 2

3z
−3− 1

24z
−4

C
(4)
3 (z) =− 1

12 + 1
6z
−1− 1

6z
−3 + 1

12z
−4

C
(4)
4 (z) = 1

24 −
1
6z
−1 + 1

4z
−2− 1

6z
−3 + 1

24z
−4.

Property 5.7. From Fig. 5.59 we can observe that the TFs of the sub-filters, except
for the C0(z), around ω = 0, have high pass characteristics typical of the differentia-
tors filters [1]-[3]. This depends on the global TF required by the bank. In fact, by
developing the target function HD(ejω) = e−jωD in Taylor’s series we get
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Fig. 5.59 Farrow sub-
filters characteristic for
N = 3. Note that C0(z)
(top) is a simple delay
while C1(z), C2(z) and
C3(z), for ω→ 0, have the
typical high-pass charac-
teristics of a differentiator
filter.

HD(ejω) = e−jωD =
∞∑
m=0

(−1)m
m! αm(jω)me−jωDi

=
∞∑
m=0

(−1)m
m! αmHm(ejω)

(5.72)

where the Hm(ejω) consists of the frequency response of the m order differentiator
that for m= 0 is a simple delay.

The previous property suggests that the coefficients of the Farrow structure may
be obtained using FIR approximations of ideal differentiators. This property, as we
will also see in the following paragraphs, has been used for the alternative design
of Farrow’s structure [35]. However, given the high freedom degree in choosing sub-
filters, the reverse is not necessarily true. Depending on the chosen philosophy design,
the sub-filters are not required to approximate differentiators [38].
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Fig. 5.60 Farrow FDL for N = 3 (left) and N = 4 (right).

Remark 5.19. Note that, the computational cost of Farrow’s robust structure re-
quires the calculation, even if in parallel, ofN FIR filters for which you haveN(N+1)-
multiplications, N2-additions. Considering also the N -multiplications for D, we have
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a cost computational total of N2 +2N -multiplications and N2 +2N -additions × sam-
ple. Moreover, since the delay line is shared throughout the bank, many intermediate
calculations are common to multiple filters. In the above example for N = 4, the term
2
3z
−3 is common to C1(z) and C2(z). You can also see how many other terms are

common to less than one sign. These terms are easily grouped together in order to
decrease the number of multiplications, which generally requires more computation
than sums.

However, more efficient architectures are available in the literature. For example in
[43], a Farrow structure is proposed in which the filter bank is implemented with
coefficients with values of power of two. So it is possible to reduce the multiplier
cemplexity in case of hardware implementation.

5.6.8 Modular Structures by LIF Taylor Expansion
The LIF Taylor expansion, as seen above in Eqn. (5.72), consists of a set of basis-
functions consisting of simple differentiator filters. Based on this observation, Candan
in [76], proposes a simple structure based on LIF Taylor expansion carried out directly
in the discrete-time domain.

Before proceeding, to simplify the development as suggested in [77], let’s consider
the following useful notations.

1. The term δ(·) indicate the difference operator: δ(f [n]) = f [n]− f [n− 1], i.e. the
TF is (1−z−1).

2. The term f [N ] = f(f+1)(f+2) · · · · · (f+N −2)(f+N −1), indicate the factorial
polynomials (aka rising factorials or Pochhammer symbol);

3. let us indicate its first-difference (as d
df f

N =NfN−1), by the following recursive
formula δ(f [N ]) =Nf [N−1].

With the above notations the LIF truncated discrete-time Taylor series can be written
as

y[t] =
N∑
n=0

δn(x[k]) · (t−k)[n]

n! (5.73)

the previous expression is also denoted as Newton’s backward difference formula [78].
Now, indicating δn(x[k]) = δn−1(x[k])−δn−1(x[k−1]), with simple manipulations

the (5.73) can be written recursively as

δn(x[k]) · (t−k)[n]

n! =−δn−1(x[k]) · (t−k)[n−1]

(n−1)! · t−k+N −1
N

· δ(x[k]). (5.74)

Indicating with D = k− t the desired fractional delay, the expression (5.74) yields
a modular structure shown in Fig. 5.61, also denoted as a Newton fractional-delay
(NFD) filter. In this case the sub-filters are simple differentiators implementable with-
out multiplication, and the complexity for a N -order filter is O(N), instead of O(N2)
of Farrow’s structure.
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Fig. 5.61 Modular LIF
structure also denoted as
Newton fractional-delay
(NFD) filter. At the sum-
mer outputs all LIF inter-
polators order are available
(Modified from [76]).

In the LIF structure of Fig. 5.61 in the intermediate outputs, the delayed input
signal is present at the same time, for different delay parameters. In addition, note that
the structure in Fig. 5.61 consists of a series of sub-filters whose output is multiplied
by a term that depends on the target delay D.

However, each output sample depends on the current and past values of the delay
parameter. Therefore, the above LIF structure does not work correctly for the time-
varying fractional delay (e.g., as in sample rate conversion).

To overcome the problem, in [79] a new architecture based on Newton’s backwards
difference formula (5.73) has been proposed, called the Newton-transpose interpolation
structure (TNIS) illustrated in Fig. 5.62.
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structure also denoted
as transposed Newton
fractional-delay (TNFD)
filter. (Modified from [79]).

Fig. 5.63 Magnitude and
absolutes delay responses
of modular LIF imple-
mented with the structure
in Fig. 5.62 of orders 4, 5.
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In this case the upper part of the structure is similar to a delay-line where the delay
elements are replaced by differentiator-elemets z−1→ (1−z−1), with no intermediate
operations. The parameter that defines the fractional delay is external to this chain
so it can be time-varying because, as in Farrow’s structure, it does not affect the
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internal state of the sub-filters. This is very interesting for audio applications as it
is very robust, efficient, easily scalable and feasible in both software and dedicated
hardware structures.

5.7 Digital Oscillator

As for analog signals very often also for numerical sequences, the generation of periodic
waveforms as sines, quare waves, triangular waves etc. is necessary.

A simple approach for the generation of periodic signals consists in determining
a filter with TF H(z) such that its impulsive response h[n] is equal to the desired
waveform. By sending an unitary impulse δ[n] to this filter the desired waveform is
generated. The computational cost of the generator is therefore that of the filtering
process.

However, a more efficient way to generate any waveform is the so-called wavetable
technique. The technique simply consists in storing a period of the waveform on a
table consisting of a Random Access Memory (RAM) organized as a circular buffer
and reading its contents periodically. The reading period is therefore equivalent to
the fundamental frequency of the waveform.

5.7.1 Sinusoidal Digital Oscillator
The approach is based on the synthesis of a certain TF chr allows the simple generation
of a sinusoidal signal at frequency f0 with sampling frequency fs [3]. Said ω0 = 2πf0/fs
the sinusoid pulsation the desired impulse response is the following

h[n] =Rn sin(ω0n)u[n]

which for 0 < R < 1, corresponds to the generation of a sinusoid with exponential
decay. In case R = 1, the generated signal is a pure sinusoid with frequency f0. The
corresponding TF results

Hs(z) = R sinω0z
−1

1−2Rcosω0z−1 +R2z−2 .

Similarly, it is possible to generate a cosine wave oscillation. In this case the h[n]
results to be equal to

h[n] =Rn cos(ω0n)u[n]

and the resulting TF H(z) is

Hc(z) = 1−Rcosω0z
−1

1−2Rcosω0z−1 +R2z−2 .
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for n = 0,1,2, …, do:
  w0 = (2Rcos0)w1-
R2w2+[n]; 
  y = (Rsin0)w1; 
  w2 = w1; 
  w1 = w0; 
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Fig. 5.64 Discrete-time
circuit diagrams for the
implementation of a pure
oscillator. a) Sine oscilla-
tor. b) Cosine oscillator.

5.7.2 Wavetable Oscillator
In computer the wavetable oscillator is one of the earliest techniques use in sound
synthesis [54]. The wavetable oscillator is realized with a RAM memory in which is
stored a period of the waveform that is read periodically with a certain speed. The
read values are sent to a digital to analog converter (DAC) that produces an analog
output signal. The table on which the waveform is stored is called look-up table (LUT)
and is generally read with the circular buffer technique described above [3], [55].

Let D be the length of the LUT where period of the waveform is stored, let fs be
the reading speed of the table samples, the frequency of the periodic sound is equal to
f = fs/D. However, if we want to realize a sound with the same waveform but with
a different frequency, we can proceed in two ways:

• by varying the reading frequency fs of the table;
• by virtually varying, with appropriate fractional interpolation techniques, the

length of the table.

Since, for the pitch variation of the memorized sound, it is more complex to vary the
LUT reading sampling frequency, the second technique is almost always considered.

The change in the length of the table is obtained by means of an interpolation
process. That is, a table of a certain length is used (generally a rather long table is
preferred) by taking the most appropriate value each time or by interpolation (see
§5.6) between two (or more) adjacent points or by using the abscissa value closest to
the desired one (zero order interpolation).

Said sampling increment nSI , the distance between the two samples read succes-
sively, the fundamental frequency of the sound produced results as follows

f0 = nSIfs
D

. (5.75)

Wavetable synthesizers read the sampled waveforms sequentially from the buffer and
the sample can be read with a variable increment pointer.

Said p the instantaneous phase of the oscillator (pointer to the circular buffer) the
reading algorithm can be implemented simply with a module D

p = (p+nSI)%D
s = A ·LUT[p]

where A is the signal amplitude, LUT is the table where the waveform is stored, and
s represents the output signal.
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Remark 5.20. Note that, as we will explore in Chapter XXXX, the wavetable oscil-
lator is the basic element for the realization of numerous sound synthesis techniques.
This type of oscillator is used both in real time, with dedicated hardware, and in
deferred time (off-line) with programs that store the file containing the song that will
be available for listening in times after its generation [54]-[58].

5.7.2.1 Band-limited and Fractional Delay Wavetable Oscillator

Many waveforms useful in sound synthesis have discontinuities. Square and triangular
and other waveforms, or waveforms derivative, have a spectrum that is not band lim-
ited, so their direct use in wavetable oscillators would give rise to aliasing phenomena.
In the presence of aliasing, the harmonics above the Nyquist limit fold back in the
low frequencies, causing annoyance and noise in the audio range [57]-[58].

Remark 5.21. A simple method to avoid aliasing is that the stored waveform must
be appropriately limited in band, and the discontinuity should be rounded near the
desired sampling time.

If in Eqn. (5.75) the parameter nSI > 1, the sampling period is lowered. In this case,
care must be taken to respect the Nyquist frequency. In fact, interpolated wavetable
synthesis is not guaranteed to be bandlimited when the phase increment is larger than
one sample

Thus, for a waveform with many harmonics, usually an upper bound is imposed
on the phase increment by the highest harmonic of the signal in the wavetable. Let
Nh the harmonic number, a common choice is

max(nSI) = Df0
fsNh

= D

PNh

where P = fs/f0, not normally integer. Otherwise, to obtain a limited band signal,
an anti-aliasing/anti-image filter must be applied before conversion. For example, to
increase the pitch of a signal the sampling frequency should be augmented (P < 1).
Consequently, to prevent aliasing must provide effective lowpass filtering. So, accord-
ing to Eqn. (4.96), you need to consider an anti-aliasing filter ha(t) =sinc(fat) with
fa = min(fs/2,f0/2) (see §4.7.3).

In other words, up/down-sampling algorithm requires a low-pass filtering with a
variable cutoff frequency that is controlled by the conversion ratio P . Thus, anti-
aliasing wavetable methods utilize variable fractional delay filters as an essential part
of the oscillator algorithm [64].

5.7.2.2 Signal-To-Noise Ratio of Wavetable Oscillator

The signal-to-noise ratio (SNR) of the wavetable oscillator can be analyzed with
simple considerations in [55]-[56].

For a table of length D = 2b said xi[n] the reference signal (obtained with an ideal
sampling) and x[n] the signal obtained from the wavetable oscillator, the RMS error
is defined as
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e[n] =

√√√√√ D∑
n=1

(xi[n]−x[n])2

D
.

Considering this error as additive disturbance, and zero-mean signals, we can easily
calculate SNR as

SNR= σ2
x

σ2
e

=
∑
x2[n]∑
e2[n] , or in decibel SNRdB = 10log10

(
σ2
x

σ2
e

)
. (5.76)

Therefore, the SNR depends on the input signal statistics: if the input signal level is
low, the SNR decreases.

For a signal sample representation with a b-bit long word, the q quantization step
is defined as q = 2xmax/2b where xmax ∴ |x[n]| ≤ xmax, is the maximum level of the
input signal. Considering uniform distributed quantization error, the noise variance
turns out to be

σ2
e = q2

12 = x2
max

(3)22b .

So, the Eqn. (5.76) can be rewritten as

SNR= σ2
x

σ2
e

= σ2
x

x2
max

(3)22b

= (3)22b(
xmax
σx

)2

that in dB is

SNRdB = 20log10
(3)2b(
xmax
σx

) = 6.02b+ 4.77−20log10

(
xmax
σx

)
.

So, for a maximum amplitude sinusoidal signal we get

SNRdB ≈ 6.02b+ 1.76

for a uniform distributed signal we have that

SNRdB ≈ 6.02b

while for a Gaussian signal the SNR is

SNRdB ≈ 6.02b−8.5.

For an audio signal the Gaussian distribution is the one that is closest to reality and
therefore the SNR is 8.5 [dB] lower than the best case. For example, on linear audio
CDs, the signal is represented with 16 bits so the SNR is about 87.8 [dB].
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