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Introduction 

“A picture is worth a thousand words”. This popular saying well synthesizes 
the different relative importance between visual and textual or linguistic informa-
tion in everyday’s life. As a matter of fact, visual information has reached an es-
sential and undisputed role in modern Information and Communication Technol-
ogy. In particular, the widespread diffusion of telecommunications and 
networking today offers new opportunities to the transmission and processing of 
multimedia data. Nevertheless, the transmission of highly informative video con-
tents imposes strict requirements in terms of band occupancy. A trade-off between 
quality and compression is thus asked for.   

Specifically, compression of video data aims at minimizing the number of bits 
required to represent each frame image in a video stream. Video compression has 
a large number of applications in several fields, from telecommunications (tele-
conferencing, e-learning), to remote sensing, to medicine. Depending on the appli-
cation, some distortion can be accepted in exchange for a higher compression ra-
tio. This is the case of so-called lossy compression schemes. In other cases (e.g. 
biomedical applications), distortion is not allowed (lossless coding schemes).  

Video compression techniques have been classified [45] into four main classes, 
according to the distinction among waveform, object-based, model-based and 
fractal coding techniques.  

Waveform compression techniques refers to temporal axis as a third dimension, 
belong to this category all the application working in time domain as DCT and 
Wavelet but also Motion compensation techniques [58][ CCITT2]. Object based 
techniques considers video sequence as a collection of different  objects [62] that 
can be differently processed, they are extracted by a segmentation step [44]. 
Model based approach perform the analysis of the video and the synthesis of a 
structural 3D or 2D model  [66]. Fractal Based techniques extends to video appli-
cations the success reached in image coding; an image can be expressed as the at-
tractor of a contractive function system and then retrieved by iterating the set of 
function [73]. Several standards have been also developed.  

In last years there has been a tremendous growth of interest in the use of neural 
networks for video coding. This interest is justified by the well-known capabilities 
of neural networks of performing complex input-output nonlinear mappings, in a 
learning from examples fashion. Neural Network improves the performance of all 
the four compression techniques.  

This chapter gives an overview of the major neural technique already used and 
detail one of that. It is organized as follows. In section “Review of recent stan-
dards” a short description of most recent standards in video compression is pro-
vided. Section “Neural video compression: existing approaches” presents an over-
view of most popular neural approaches to video coding, while Section “Neural 
video compression the image coding approach” describes two specific and particu-
larly effective solutions. 
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Review of recent standards 

Image and video have been the object of intensive research in the last twenty 
years. The diffusion of a large number of compression algorithm leads to the defi-
nition of several standards; two international organization (ISO/IEC and ITU-T) 
have been heavily involved in standardization of images, audio and visual data. To 
have a complete overview of recent standard and recent trends in visual informa-
tion compression see [45][51][52]; a detailed description of the standard here ad-
dressed is out of the scope of this section, more details can be found in the refer-
ences.  

The standards proposed for general purpose still images compression are the 
JPEG [46][47] based on a block DCT transform followed by an Huffman or 
Arithmetic coding, and the more recent JPEG2000 [48][49][50] based on discrete 
wavelet transform and EBCOT coding.  

On the video compression side, hybrid schemes that reduce the spatial redun-
dancy by DCT and temporal correlation by motion compensated prediction coding 
are used in ITU H.261 [53]. It was designed and optimized for videoconference  
transmission over an ISDN channel (a bit rate down to 64 kbit/sec). 

H.263 [56] and H.263+ [54] have the same core architecture of H.261 but some 
improvements are introduced principally in precision of motion compensation and 
in prediction; they allow the transmission of audio video information with a very 
low bit rate (9.6 Kb/sec).  

Last advances in video coding aim at collecting all the suitable feature previ-
ously used in video compression to develop new standards (still in developing) 
that outperform all the just introduced. One of this new algorithm is the H.26L 
[77][55]. 

The first studies of the Moving Picture Expert Group (MPEG) starts in 1988, 
they aim at developing  new standards for the Audio Video Coding. The main dif-
ference with respect to the other standards is that MPEGs are “open standard”, so 
they are not dedicated to a particular application.  

MPEG-1 was developed to operate at bit rates of up to about 1.5Mbit/sec for 
the consumer video coding and video content store on media like CD ROM, DAT; 
it provides important features including frame based random access of video, fast 
forward/fast reverse (FF/FR) searches through compressed bit streams, reverse 
playback of video and editability of the compressed bit stream. MPEG-1 perform 
the compression using several algorithms such as the subsampling of video infor-
mation to match the HVS (human video system), variable length coding, motion 
compensation and DCT to reduce the temporal and spatial redundancy 
[57][58][59].  

MPEG-2 is similar to MPEG-1 but it include some extensions to cover a wider 
range of applications (e.g. HDTV and multi channels audio coding). It was de-
signed to operate at a bit rate between 1.5 and 35 Mb/sec. One of the main en-
hancement of MPEG-2 over MPEG-1 is the introduction of syntax for efficient 
coding of interlaced video. The Advanced Audio Coding (AAC) is one of the for-
mats defined in the non back-compatible version of MPEG-2; it was developed to 
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perform the multichannel audio coding. The MPEG-2 AAC is based on the 
MPEG-2 layer III, some blocks are improved (frequency resolution, joint stereo 
coding, the Hoffman coding) and some others like spectral and time prediction 
was introduced. The resulting standard is able to perform the coding of five audio 
channel [60][61]. 

From the evolution of the object oriented computer science comes the use of 
objects into video compression; this leads the developing of MPEG-4: the video 
signal can be considered as composed by different objects, with theirs own shape, 
motion and texture representation.  Objects are coded independently in order to al-
low direct access and manipulation.  The power of this coding approach is that dif-
ferent objects can be coded by different tools with different compression rate; in a 
video sequence some parts of the scene could require less distortion but some 
other not. The original video is than divided in streams: audio and video stream 
are separated, each object have its own stream, as information about object place-
ment, scaling and motion (Binary Format of Scene).  

In MPEG-4 Synthetic an Natural sounds are coded in a different ways, the Syn-
thetic Natural Hybrid Coding (SNHC) perform the composition of natural com-
pressed audio and of synthetic sounds (artificial sound are created in real time by 
the decoder); MPEG-4 proposes also the division between speech and “non 
speech” sound because the first one can be compressed by ad hoc techniques  
[62][64][63][65].  

 In last years the value of information starts to became not only  the information 
itself but how easy one can access, manage, find, and filter such information. 
MPEG-7 formally named “Multimedia Content Description Tool”  provide a rich 
set of tool performing the description of audio-visual content in multimedia envi-
ronment. The application areas which benefit from audio-video content descrip-
tion are in different fields: from the web search of multimedia content to the 
broadcasting media selection, from the cultural services (like art gallery) to home 
entertainment, from the journalist application to the more general databases (of 
multimedia data) applications [67][68][69][70]. The descriptions provided by 
MPEG-7 are independent of the compression method. Descriptions have to be 
meaningful just in the context of the considered application, for this reason differ-
ent types of features perform different abstraction levels. MPEG-7 standard con-
sist of several parts, in this section Multimedia Description Schemes, the Visual 
description tool  and the Audio description tool are detailed 

Multimedia Description Schemes (DSs) are metadata structures to describe au-
dio-visual content, it is defined by the Description Definition Language (DDL) 
based on XML. Resulting descriptions can be expressed in text form (TeM) or in a 
binary compressed form (BiT); if the first one allow human reading and editing, 
the second one improve the efficiency in storing and transmission. In this frame-
work are developed tools providing DSs with information about the content and 
the creation of the multimedia document and DSs to improve the browsing and the 
access to the audio-visual content. Visual description tool performs the description 
of visual category like colour, textures, motion, localization, shape and face rec-
ognition.  Audio Description tool contains low level tool (e.g. Spectral, temporal 
audio feauters descriptions) and high-level specialized tool like musical instru-
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ment timbre, melody description, spoken tools and the one for the recognition and 
indexing of general sound. MPEG-7 standard provides also an application to 
represents the multimedia content description named “Terminal”; it is important to 
underline that the Terminal performs both the downstream and the upstream 
transmission involving less or more specific queries from the end user.  

The MPEG standards just introduced are interested in processing of the multi-
media content in a physical context and in a semantic one (MPEG-7); they does 
not addresses other issues like multimedia consumption, diffusion, copyright, ac-
cess or management rights. Based on the above observation MPEG-21 aims at re-
solving that lack by providing new solutions to access, consumption, delivery, 
management and protection process of the different content types. 

MPEG-21 is essentially based on two concepts: Digital Item and Users. The 
Digital Item (DI) represents the fundamental unit of distribution and transaction 
(e.g. video collection, musical album); it is modelled by Digital Item Declaration 
(DID): a set of abstract terms and concepts.  The Users are every entity (e.g. hu-
mans, communities, society) that interacts with MPEG-21 environment or uses 
Digital Items. The management of Digital Items are allowed by the User right to 
perform the action [71][72]. 

Neural video compression: existing approaches 

This section introduces some interesting neural applications. Neural networks 
in video compression can be used in two main ways: as a stand alone method or as 
a part of algorithm.   

In this last context NNs introduces improvements in coding schemes of intra 
frame coding, in clustering capability, motion estimation and objects segmenta-
tion; the power of NNs as trained system is applied also in removing artifacts and 
post processing.  

Important issue in video compression is the computational complexity that pro-
duces more complex physical implementation of the algorithm. As a matter of fact 
Artificial Neural Networks are usually computationally less expensive with re-
spect to other algorithms, this is one of the reasons of the success of the neural 
network in video coding. .  

In the following sections will be introduced application on Vector Quantization, 
Singularity Map creation and human vision approach, Motion Compensation and 
Fuzzy segmentation; these section aim at introducing some of the more represen-
tative existing approach of neural video compression.   

Vector quantization 

Vector Quantization is a very popular and efficient method for frame image (or 
still image) compression, it represents the natural extension of scalar quantization 
to n-dimensional space [17][18][19].  
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Figure 1 represents a conceptual scheme of a Vector Quantization coder, given 
a codebook, input vectors are quantized to the closest codeword so the output of 
the coder is the index of the codeword. Codebooks are generated using clustering 
algorithms from a set of training images. In [20] this optimization problem is ap-
proached by a Kohonen neural network with the same number of neurons as the 
number of pixel block;  in such context the number of cluster (output neurons) are 
set to the desired numbers of codeword. 

 

  
Fig. 1. Conceptual scheme of Vector quantization 

 
The learning of the network is based on the evaluation of the minimum distance 

between outputs and inputs: the winner is the neurons with the lower value of that 
distance.  The main advantages in using SOFM with respect to other clustering al-
gorithm (k-means, LBG) include less sensitivity to initialization, better rate distor-
tion performance and faster convergence; moreover SOFM during the learning 
grants to update  not only the winning class but also the neighboring one, this be-
cause diminishing the chance of winning the competition produce the under-
utilization of neurons.  

For more details about the motivation that inspire the use of Self-Organizing 
feature map into the codebook designing see[21][22][20]. Suitable properties of 
SOFM can be used in performing more efficient codebook design, example are 
APVQ (Adaptive Prediction VQ), FSVQ (Finite State VQ) and HVQ (Hierarchi-
cal VQ).  

APVQ uses ordered codebooks in which correlated input are quantized in adja-
cent codewords; an improvement in coding gain is obtained by encoding such 
codebook index with a DPCM  (or some other neural predictor) [23]. 

FSVQ [24][Foster] introduces some form of memory in static VQ. It defines  
states by using the previously encoded vectors, in each state the encoder selects a 
subset of codeword of the global codebook; the Side Match FSVQ [29] in which 
the current state of the coder is given by the closer side of the upper and left 
neighboring vector (the block of the frame image).    

In order to perform reduced computational effort, hierarchical structure can be 
used. In literature are widely diffused techniques that cascade the VQ encoders in 
several ways: two layers structure or hierarchical structures [27] based on topo-
logical information [26] .  
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In Vector Quantization framework other Neural applications are the two step 
algorithms; in [28] it was proposed an algorithm in which a neural  PCA  produces 
inputs for SOFM performing the VQ. 

Singularity map and human vision 

In several fields of audio-video processing the most interesting successes are 
reached by emulating the still better processing system: the human brain. 

The approach on video compression introduced in this section is used in cases 
of very low compression ratio (about 1000:1) and it is inspired by the human vi-
sion system. For its own physiological structure it does not pay attention to each 
single pixel of an image or a video stream rather to the intensity changes. Focus-
ing on particulars that are really important for the human perception provides a 
better quality in high compression situation; such particulars are edges and inten-
sity changes.  

At entering the light in human eye it focus on the retina in which there are two 
kind of receptors, rods and cones; retina uses the rows for monochromatic light 
and cones for the colour vision (RGB). Each receptor fires when it receives light, 
in firing it takes the resources from the near receptor in such a way to allow them 
a smaller excitation. So the dark areas became darker and the light area became 
lighter. This phenomenon inspired some artificial neural structure; it is well 
known as “lateral inhibition”. For these reasons retina is able to better detect edges 
than smooth surfaces. The transmission through the optical nerve suffers of propa-
gation dispersion, this  produce the smoothing of the edge by broadening the bor-
ders.  

The Human Vision System (HVS) is the main difference between the approach 
here introduced and other approaches, for more detail see [31][30][32]. 

The algorithm is composed by two main parallel steps: 

− very low bit rate compression performed with a method that does not produces 
block effect. 

− singularity map computed from the original video, before the compression. 

the final step correspond to the application of singularity map on compressed 
frames. A block scheme of the proposed technique is represented in figure 2. Re-
sults reached by the SM application are better than the one obtained with only the 
video compression techniques (upper path in figure 2).  
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Fig. 2. Block scheme of the Human Vision System based compressor. 

The algorithm performs two type of Singularity Maps: the Hard one for daily 
video sequences and the Soft one for nightly video sequences; moreover it takes in 
particular consideration the presence of noise into the original video sequence be-
cause it can produce a more difficult estimation of singularity map. 

Singularity Map is obtained labelling, with topological index and greyscale cor-
respondence, the singular point of the border of the frame image. By this way the 
whole edge can be transmitted as a sequence instead of as an image.  

Singularity Map is the collection of the multiresolution edges of a frame image, 
the extraction processing requires special cares because ordinary edge extractors, 
like Sobel,  broadens the edges map. 

For Hard Singularity Map  [31] proposes the use of iterative min-max, for the 
Soft SM it proposes the CNN (Cellular Neural Networks) that can extract sharpen 
edge in almost real time.   
Once computed the SM the very low bit rate video compression is performed us-
ing EPWIC (Embedded predictive Wavelet Image Coder [33]), EZW [34] or other 
performing wavelet compression techniques.  

Motion compensation 

Motion compensation (MC) is one of the most performing techniques to reduce 
temporal correlation between adjacent frames. It is based on the issue that adjacent 
frames can be very similar so highly correlated in a large number of general pur-
pose video applications.  In order to reduce this correlation one block in a frame 
can be coded as a translated version of one block in a precedent frame, but have to 
be transmitted the motion vector too.  In this framework only translational motion 
is considered.  

In motion estimation framework, frames are segmented in macroblock of 16 x 
16 pixes composed by 4 block of 8x8 pixels (a reduced block representation error 
correspond to finer block but it produce computational overhead). Figure 3 shows 
how in coding the block of frame k is computed the “best match block” of previ-
ous frame and than the representation error is coded together with the information 
of the “motion vector”   
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sequence 

Broad vision operator:  
low bit rate compression 

Edge vision operation 

Compressed video 
sequence 

Singularity 
map 

extractor 

SM motion  
regolation 
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Several methods have been investigated in order to reduce the estimation error 
and in order to fasten the best match research; the so called predictive methods 
perform the matching research only towards previous frame, the bidirectional one 
consider also the future frames to perform a bidirectional estimation 

 

 
Fig. 3. Motion Compensation  

In [35] is proposed an Hopfield neural algorithm to perform hierarchical motion 
estimation. It is used a classical best match method in order to reduce the number 
of possible macroblocks then, once obtained a subset of D candidates an Hopfield 
Network is used to obtain the best vector of affinities v. The optimum affinity vec-
tor v is the one that optimize the following equation 

2
,

1 1

1 1
2 2

L D

p p i i
p i

f g v
= =

 
− = − 

 
∑ ∑f Gv  (1.1) 

 
In equation (1.1) f is the vector of the current block to be estimated, G is a ma-

trix which column are the D candidate block (produced by the first step) v is the 
affinity vector: the one that select the best match block.   

Architecture of the neural network which perform the vector optimisation is 
represented in figure 4. 

 

   
Fig. 4. Hopfield neural network to perform the motion estimation. 

Other approaches on motion estimation by neural networks are performed by 
cellular neural network (CNN)[36][38][39][37][76]. 
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These works aim at parallelize the computational flow required by both motion 
estimation and compensation; the application of CNNs perform faster and scalable 
computations. 

Figure 5 shows the cell of the network presented in [36]; it graphically repre-
sent the set of difference equation given by: 

( ) ( ) ( ) ( ), ; , , ; ,
, ,

ij
ij i j k l kl i j k l kl

k l k l

x t
Cx t A y t B u t I

R
= + + +∑ ∑&  (1.2) 

in which the letter of the equation refers to the block of figure 5.  
In [36] motion estimation is based on maximization of the a-posteriori probabil-

ity of the scene random field given the random motion field realization; CNN are 
used because it has the same structure of the energy function of the network. 

Cellular neural networks were designed to perform an optimization process 
based on its intrinsic property to evolve towards a global minimum state. Detail 
about algorithm, stability and network design can be found in [36][37][40].  

The distributed computation capability, based on the parallel structure of 
CNNs, are used in other contexts. 

 
  Fig. 5. The Cellular Neural network proposed in [36]. 

In [38][39] CNNs perform fast and distributed operation on frame images. The 
mathematical formulation for the network used is the following 
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The motion compensation proposed aims at determining, inside the frame In+k , 
what are the object belonging to the frame In. Considering the frame n+k, the objects 
position in the previous frame n are computed by moving each object of the frame n 
in a p x q - pixels window and comparing the result with the frame In+k .  

The motion research is performed following a spiral trajectory.  All the process-
ing operation need to perform this research are made by the CNN fixing some val-
ues to the network parameters such as A, B, Â , B̂ , x, I, u, y. 
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Neuro fuzzy segmentation of Human image sequences 

The modern video coding techniques in order to achieve better compression ra-
tios allows different compressing methods applied to different objects of a the 
same video stream (object-based compression). 

The advantage of using different compressions for different objects are strictly 
bounded to the capability of identify and extract the objects from the background 
of a video stream. Classical tools related to the generation of the region-based rep-
resentations are discussed in [44] in which are reviewed state of art on this frame-
work. 

 In [41] spatial and temporal information are combined to perform a neuro-
fuzzy video segmentation of a videoconference streams (one person and a back-
ground).  The approach consists of three main steps: 

− clustering 
− detection  
− refinement 

In the first step a fuzzy self-clustering algorithm is used to group similar pixels 
in the base frame of video stream, into fuzzy cluster. In detail frame image is di-
vided into 4 x 4 pixels blocks, then block are grouped in segments by the cluster-
ing algorithm, these segments are then combined together in order to form larger 
clusters. Each cluster is represented by Gaussian membership functions (one for 
the luminance and one for each chrominance) with a given mean value and vari-
ance.  

After fuzzy clustering is completed, the detection step starts. This second step 
detects human face and body and extracts them from background. Face segments 
are quite easy to be identified because they are characterized by values of chromi-
nances within a reduced range and values of luminance with consistent variations. 

Once the face area was identified the rest of body is assumed to lay in the area 
under the face, so possible body segments belong to that area. On the base of such 
analysis the clusters can be divided into: 

− foreground  
− background 
− ambiguous region 

A fuzzy neural network is constructed and trained in order to identify the am-
biguous region too. The architecture of such neural network is represented in fig-
ure 6. 

For pixels of each cluster the input of the network x1, x2, x3 are the values of 
luminance and two crominances, with such inputs the output of the network will 
be 1 if the cluster (or only the pixel) totally covers the human object and 0 other-
wise.  The network’s layers considering the architecture of figure 6 are: 
− Layer 1: The input layer contains three nodes each of that transmit directly its 

input to the next layer. 
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− Layer 2: The fuzzification layer contains N groups of three neurons (N is the 
number of the fuzzy clusters). The output is computed as a Gaussian function: 

2(1)
(2) exp i ij
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o

σ

  −
 = −     

 mij, and σij are free parameter of the learning. 
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Fig. 6. The fuzzy neural network that perform the human objects refinement. 

The free parameters (mij, σij, ci) of the network are trained from foreground and 
background blocks, the training algorithm is a combination of SVD based least 
square estimator and gradient descendent method (hybrid learning). 

Other approach on segmentation by fuzzy neural network are based on the 
fuzzy clustering of more complex data structure; data considered to perform the 
segmentation are together inter-frame information such as colour, shape, texture 
and contour, and intra-frame information such as motion information  and object 
temporal shape.   

In [42] good segmentation results are obtained by a two steps decomposition. 
The first step performs the image splitting in subsets,  using an unsupervised neu-
ral network; the frame image is than divided into its clusters. 

The hierarchical clustering phase reduces the complexity of the object structure 
then a final processing based on PCA (eigendecomposition) performs the final  re-
finement and provides the final foreground-background segmentation. 

Other approaches are based on a sub space representation of the video se-
quence[43]. The algorithm describes video sequences by the minimum set of 
maximally distant frames, selected on the base of semantic content, that are still 
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able to describe the video sequence (Key Frames); these frames are collected in a 
Codebook. The core of the coding system is the Video Key Frames Codebook 
definition; it is based on video analysis in the vector space. The creation is per-
formed by an unsupervised neural network, it consists into the storyboarding of 
the recorded sequence.   

Image feature vectors are used to represent the images into the vector space; 
clustering all the images in feature vector space selects the smaller set of Video 
Key Frames used for defining the VKC. 

Neural video compression: the image coding approach 

The following  sections detail two waveform video compression algorithms; the 
techniques proposed are based on feed forward and locally recurrent neural net-
works. The generalization of a still image compression approach inspired the 
technique of the first section [75]. In this context compression is achieved by find-
ing some transform able to code images with a reduced number of parameters still 
representing the original image with a satisfying quality level; this technique is 
well known as transform coding [51].  

Given the set of coefficient from of a portion of an image or a video frame,  
transform coding produces a reduced set of coefficients such that the reconstruc-
tion has the minimum possible distortion. This reduction is possible because most 
of the starting block energy is grouped in a reduced number of coefficients that 
became representative for the whole block. 

The optimum transform coder, in the sense of mean square error, is the one 
that, for a fixed quantization, minimize the mean-square distortion of the recon-
structed data; Karhunen-Loève transform respect this constraint. 

In the framework of video compression  this still image compression technique 
is applied jointly with a time decomposition therefore important issues are the 
space-time decomposition and the information compression. 

Next sessions are dedicated to the image-video preprocessing and to some way 
to realize the neural  transform coder. 

Video frames pre-processing 

Everyone can see in images uniform color areas, with a poor informative con-
tent, and areas with higher detail levels yielding much more information. There-
fore using different compression ratios on areas with different activity levels, 
should provides a better quality on detailed areas, and higher compression ratios 
on  areas with more uniform values. 

Therefore frame images are decomposed in sub blocks that are processed in-
stead of processing the whole image. Such blocks can be divided in subclasses and 
coded with different coders to improve the performance of the compression 
[14][16][15].  



14      Vigliano Daniele; Raffaele Parisi;  Aurelio Uncini 

In  several papers block activity leads the coder to perform more or less com-
pression; the idea consists in using different compression ratios on areas with dif-
ferent activity levels, in order to obtain a good quality on blocks with many de-
tails, and high compression ratios on the blocks with uniform values. 

Suitable results can be reached dividing higher activity blocks on the base of 
theirs orientation: horizontal, vertical, diagonal. The best performance are ob-
tained with the classification proposed in [15] in which such blocks are grouped 
according to nine possible orientations: two horizontal (one darker on the left, one 
darker on the right), two vertical, four diagonal and the last shaded.  

Figure 7 shows a picture splitted in different size blocks by means of a quad-
tree approach, based on the pixels variance measure: the bigger is the dimension 
of the block, the lower is the content detail, and vice versa.  

Blocks with the same mask size are characterized by quite the same informa-
tion amount and are grouped in order to perform a processing with the same neural 
network.  Such Neural Network requires, in learning phase, training sets specific 
for the group. In this way each Neural Network is specialized for treating a par-
ticular class of sub-images, all characterized by quite the same activity. 

 

IMG split

th N N_1

N N_k

...

a) b)  

Fig. 7. a) Quad-tree segmentation; b) Adaptive size mask splitting block. 

In Video sequences is possible to identify not only areas in which the details 
are more or less clear, but also areas in which there can be more action or not, or 
rather in which the subject is moving or not.  

Identifying into the original sequence, sub-sequences in which the scene has 
reduced action, it is possible to assemble together similar frames and use the same 
quad-tree segmentation.   

So useful video representation is obtained identifying adjacent frames with re-
duced dissimilarities, named GOF (Group Of Frames). Each GOF collects a DA 
(Depth Activity) number of frames grouped on the base of a threshold of similarity 
th; such frames have the same quad-tree segmentation  structure. 

The threshold is a critical issue in determining the Depth Activity because the 
number of frames collected into the same GOF strictly depend by th values.  

Large values of threshold perform lower quality video restoring because frames 
are not represented by their own quad-tree structure; on the other hand, too small 
values of threshold perform a better video restoring quality but larger bit rate. 
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Groups of Frames identification, is based on the comparison of the pre-
arranged threshold th with the variance between pixels of several close frames. It 
follows the GOFs generation algorithm: 

1. given the first frame (keyframe) representing the reference image of GOF-i; 
2. some frame n belong to the set GOF-i if: the variance of the image obtained by 

the difference between frame n and keyframe is under the threshold th. 
3. finally the number of frames for which is valid step 2) gives the DA. Then the 

first frame of GOF-i is the keyframe, each following frame can be replaced by 
the differences between such frame and the keyframe; Figure 8 summarizes the 
generating process of the GOF. 
 

Depth
Activity

(DA)

GOF
pre-processor

GOF

V I D E O

GOF

F (i) F (i+1) F (i+2) F (i+DA)

I D2 D2 D1

th

. . .

. . .
 

Fig. 8. Video processing that perform the Group Of Frames  generation. 

The images contained in every GOF are coded by a set of trained Neural Struc-
tures that will be detailed in dedicated sections. The frame I and the last one inside 
the GOF, frame D1, will be coded with a fitted Quad-tree structure as can be seen 
in figure 9. For each sub-block of the keyframe I and of the frame D1 (first and 
last frames of the GOF) have to be transmitted, in addition to the compressed data 
content, information on the quad tree segmentation and network to be used for the 
specific sub-blocks, on the coding of the sub-block mean value, about the quanti-
zation and concerning the number of frames internal to the GOF.  

Sub blocks of D2 (the residual frame of the GOF) only require the information 
about the compressed data because they have the same segmentation of D1. 
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I D2 D1

. . .

Fig. 9. QT schemes applied to the pictures within the GOF 
 

The advantage in using the D2 frames resides in fact that, frames near to D1 
frame, with high confidence level, have the same quad-tree segmentation structure 
as in figure 9; moreover such images are constituted for large parts of wide uni-
form color areas, therefore the mask applied to them will be principally consti-
tuted by large size blocks (e.g. 16x16) going to reduce the value of the bit-rate. 

Figure 10 presents a blocks scheme of the processing from the video sequence 
to the compressed one. 

 

 
Fig. 10. Blocks scheme for the neural quad-tree video coding 

The Video preprocessor, given the original video stream, establishes the value 
of the Depth Activity (DA); the GOF preprocessor performs the differences be-
tween frames ; the Controller selects keyframes and frames D1 and D2 which 
have to be segmented in different ways; the coding block after segmenting each 
frame into blocks, performs neural coding for each group of input block.  

Neural feed-forward Compressor 

Once organized the visual information in a collection of segmented images be-
longing to a GOF next step is to compress each image block.  

In transform coding framework Karhunen - Loève transform represents signals 
on the basis of its principal component; considering only a reduced set of principal 
components is possible to decode the original video allowing reconstruction error 

Video Depth Activity 
Estimator 

GOF  
Preprocessor 

Controller 

channel QT  
segmentation 

Neural 
Coder 

Coding block 
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(loose of visual quality) depending by the variance of the eigenvalues of the dis-
carded eigenvector. 

In detail, given an N-dimensional vector signal x ( n n× pixels image), Kar-
hunen - Loève transform represents it in the orthogonal space of the eigenvector of 
its autocovariance matrix (squared N N×  matrix); assuming W as the N N×  
change basis matrix, no compression is performed [21]: 

=y Wx  (1.4) 

The vector ŷ represents the projection of the vector signal x on a subspace 
spanned by reduced number of eigenvectors ( m N< ).The representation error is 
not larger than the sum of the squared eigenvalues corresponding to the not chosen 
eigenvectors. Considering a change basis matrix W with rows ordered in such a 
way to minimize reconstruction error the result is a vector ŷ , provides the better 
approximation of x given the subspace dimension [1]. 

1

ˆˆ =
M N

i
i

w x
<

=

= ∑y Wx  (1.5) 

 KLT represents original vectors with reduced dimension so performs compres-
sion; moreover output vector coefficients are uncorrelated and therefore the re-
dundancy due to the high degree of correlation between the neighbouring pixel is 
removed.  

Application of KLT to video compression is not efficient because it depend on 
second order statistics (autocovariance matrix); moreover eigen-decomposition 
requires big computational effort considering the vector size in image framework. 
The statistical approach to KLT is not adequate to image coding application.  Dis-
crete Cosine Transform (performed via FFT) is able, into the image compression 
framework, to approximate quite well the KLT [51][45]. 

This reason inspire Neural approach on KLT, faster and computationally less 
intensive, to perform the solution of such a problem. 

Linear Network: the Hebbian learning 

Linear PCA is a solution to the problem of eigendecomposition of the autoco-
variance matrix. In [2] it was proposed a mechanism inspired to neurobiology, 
synaptic connections between neurons are modified by the learning; Hebb’s as-
sumption is that if two neurons are both active at the same time the synaptic bound 
between them becmes stronger. In other word when input and output neurons have 
at the same time an high output value, the connection between them is reinforced 
(grow in value). The artificial neuron designed to perform the principal component 
extraction using Hebbian learning is the one in fig 11.  
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Fig. 11. Hebbian Neuron  

Figure 11 simplifies the biological interaction each of one can be mathemati-
cally modelled as follows: 

y = ax  (1.6) 

The Hebbian learning rule applied on this structure is: 

[ ] [ ] [ ] [ ]
[ ] [ ] [ ]
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n n n
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n n n
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+
+ =

+

a a x
a

a a x
 (1.7) 

In which µ  is the learning rate, •  is the Euclidean norm. This rule has been 
shown to converge to the first principal component.  

Generalizing the Hebbian learning is possible to find the first M principal com-
ponent. The second principal component can be obtained taking again the first 
principal component of the set of data obtained by removing the first principal 
component from the original data and so on.  

 
Fig. 12. Linear Network for Pricipal component extraction 

The generalized Hebbian Algorithm, inside the learning, include also the or-
thogonalisation as shown in the following equation: 

[ ] [ ] [ ]1 T Tn n LT nµ   + = + −   A A yx yy A  (1.8) 

where the LT is the operator that set to zero all the element above the diagonal. 
The generalized Hebbian learning provide the matrix A with the first M principal 
directions. An alternative approach in providing the first M principal component 
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was given by the APEX (Adaptive Principal component Extraction) network in 
which the so called Hebbian synapses are used together with the anti-hebbian one. 

 
Fig. 13.  The APEX network 

Also his architecture has a biological justification. The m-th principal compo-
nent  can be computed on the base of the previous m-1; the c component are called 
anti Hebbian.  

An exhaustive explanation about the Hebbian learning and about the algorithms 
inspired to its come out of the score of this section so for the learning rule of 
APEX network see[74]. 

Non linear Neural Network: MLP 

In 1988, Cottrel, Murno and Zipper try to resolve the PCA problem with a two 
layer perceptron [5] trained with the so called Autoassociative Back Propagation; 
this work opened the way to a large number of future developments. 
Figure 14 shows the proposed architecture. The first algorithm by Cottrel was re-
ferred to a linear structure;  there each neuron  is expressed as follows: 

ˆ T
i iy = a x  (1.9) 

So: 

 
ˆ

ˆ ˆ

T

T

=

= =

y A x

x Ay AA x
 (1.10) 

In this framework should be noted that with respect the (1.4) and (1.5) the 
(1.10) allow also different optimum solutions given by all A=WQ-1 (in which Q is 
such that QQ-1=I). 

This underline the issue that neural networks can achieve the same compression 
ratio as KL transform without reaching this own eigenvector matrix. 

Other approaches [4] develop neural networks with nonlinear sigmoidal func-
tion that can be trained during the learning. This approach reaches better results 
with  respect to the linear network [3].  

One of the most critical issue of the application of neural PCA is the fixed 
compression ratio of each processed block: the network performs the compression 
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with a quite low distortion level uniform blocks but with higher distortion the less 
uniform one.  
    

 
Fig. 14. Multi Layer perceptron performed for Autoassociative Back Propagation. 

To overcome this problem Size Adaptive Networks [6] uses different trained 
networks to perform a compression which strongly depend by the block activity. 
This allows higher compression of blocks with a low activity level but and a good 
detail recovery of the block with an higher one. 

As is introduced in the dedicated section the a quad-tree algorithm segment im-
ages into several dimension block, on the base of activity level. By this way im-
ages are segmented in blocks of 4 x 4, 8 x 8 and 16 x 16 as shown in figure 15. 
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Fig. 15. Adaptive size mask visual information compression 

Three kinds of neural structures are developed to process that different size 
blocks: each network has an hidden layer of 8 neurons but into the input and out-
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put layers has so mach neuron as pixels are into the block. The output of each neu-
ron is quantized with 4 bit. 

It should be noted that learning is an important issue in this kind of application. 
In order to improve the learning capability advances in adapting sigmoidal func-
tion has been developed; in neural networks spline adaptive models are used in-
stead of fixed sigmoidal functions [8].  

Performance of the video compression  are usually valuated on the base of 
Peack Signal to Noise Ratio (1.11) calculated  as a the MSE in dB ad bit rate (in 
kbit/sec). 
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Figure 16 shows several PSNR values obtained compressing Missa benchmark 
by processing GOFs  with different threshold levels.  
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Missa.avi  ; th = 8
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Fig. 16. a) Missa avi movie segmented and compressed; b-c) show PSNR considering the 
GOF evolution with two different level of threshold. 

Table 1 shows several PSNR and Br values of the video Missa at the threshold 
changing.  From table 1 it is easy to see that considering a relaxed value of thresh-
old (an higher value) will produce a gain in compression level (bit rate) but dimin-
ish the quality of the recovered video. 

a) 

b) c) 
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Table 1. Peack Signal to Noise Ratios (PSNR) and bit error Rate (Br) on changing thresh-
old of the Missa video. 

th = 8 th = 15 th = 30 

 
PSNR 

(dB) Br (kbps) PSNR 
(dB) Br (kbps) PSNR 

(dB) Br (kbps) 

Missa 34,62 205,63 34,02 166,05 33,02 152,85 

Susi 31,11 469,53 30,91 422,31 30,38 361,52 

Hierarchical Linear Structure 

Two layers Non linear Neural Network just widely exposed reach some suitable 
performance in video compression: it derives its success from several advantage 
such as short time encoding decoding no explicit use of codebooks. 

However it consider only the correlation between pixel within the same seg-
mented block so only a limited level of compression can be obtained. On a theo-
retical point of view a better decorrelation level (and then compression) can be 
reached considering, as input of a neural structure, not only the block itself but 
also nearer one. 

 
 

Fig. 17. Multilayer network for high order data compression-decompression. 

 
This suitable performance is obtained by Hierarchical Neural Networks appli-

cations [7]. The idea is to divide a the scene or part of it into N disjoint sub-scenes 
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each of one is segmented in n n× pixels blocks, the group of blocks are processed 
together by the hierarchical structure represented in figure 17.  

The Hierarchical Neural Network is not fully connected; it consist of input, 
hidden and output layers.  

While the input and the output layers are single layer composed by N input 
blocks (one for each section of the image) where each block has n2 neurons; the 
hidden-layer section consist of tree layers: combiner, compressor and decombiner 
layer. The combiner level is not fully connected with the input one.  

Although the learning of this structure could be performed by the classical back 
propagation the so called Nested training algorithm provides better performances. 
NTA is a three phases training, one for each part of the structure: 

− OLNN (Outer loop neural network) performs the training of the fully connected 
network constructed by input layer, combiner layer and output layer; a standard 
back propagation is applied to the structure in which the desired output is equal 
to the input; the training set is given by images segmented  blocks   

− ILNN (Inner Loop Neural Network) performs the training of the hidden fully 
connected layers: Combiner, Compressor and Decompressor 

− After the OLNN and the ILNN are trained, their weights are used to construct 
the overall network  

It should be noted that this hierarchical structure perform inter block decorrela-
tion in order to achieve a better compression level. The use of two layer percep-
tron (not hierarchical structure) with spline adaptive activation functions riches the 
same performance in term of image quality and compression level requiring a 
more simple structure.  

Recurrent neural network 

In video framework processing in a time space domain allows to perform pre-
diction algorithms not only within the same frame but also with respect to near 
frame. Many widespread video coding techniques make use of some tricks in or-
der to take advantage of such additional information, e.g. the motion compensa-
tion in MPEG.  

In the field of the neural networks consistent advantages are reached including 
dynamic inside the structure of the Neural Network; the networks just introduced 
in  previous section (see figure 14) are modified in order to follow the dynamic 
characteristics of the video sequences. This precaution allows either to improve 
the quality of the restored video, fixed the bit-rate, or further reduce the compres-
sion level [78]. Dynamic behavior in Multi Layer Perceptrons can be obtained by 
two different approaches: 

− Local approach: introducing a dynamical (e.g. ARMA) model of the neuron 
− Non Local Approach: introducing the feedback of the whole neural network  
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In both approaches, given an input at time lag n [ ]x n , it may influence a the 
output at the time lag n-h [ ]y n h− .  In case of asymptotic stability, 

[ ] / [ ]y n h x n− ∂ this derivative goes to zero when h goes to infinity.  
The value of h for which the derivative becomes negligible is called temporal 

depth, whereas the number of adaptable parameters divided by the temporal depth 
is called temporal resolution.  

The architecture used in this context is the IIR-MLP proposed by Back-Tsoi 
[10][11] where static synapses are substituted by conventional IIR adaptive filters, 
as depicted in figure 18: 

 

 
Fig. 18. Locally recurrent neuron for Multilayer Neural Network. 

In literature there exists several algorithms to train such kind of networks, al-
though a comprehensive framework is still missing.   

In [9] it was introduced a very performing algorithm for the learning of the so 
called locally recurrent neural networks. It is a gradient rule based on the recursive 
back-propagation algorithm.   

The learning of the locally recurrent neural network is performed by a new gra-
dient-based on-line algorithm [9], called causal recursive back-propagation 
(CRBP); it presents some advantages with respect to the already known on-line 
training methods and the well known recursive back propagation. This CRBP al-
gorithm includes the Back Propagation as particular cases [12][13]. 

Locally recurrent Neural Network is designed introducing an ARMA model on 
the site of linear synapses, figure 19 shows the structure of the  network. The for-
ward phase at time lag n is described by the following equations evaluated for the 
layers 1,...,l M=  and the neurons 1,.., lm N= . 
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Given [ ]( )l nΦ  the set of weights of layer l at the time lag n, the updating rule is: 
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With ( )( ) 1i
n mL −  order of the moving average part of the synapse of the n-th neuron 

of the l-th layer relative to the m-th output of the (l-1)-th layer. 

+ sgm

q-1

q-1

+

q-1

q-1

sgm

(0)
1 [ ]x t

(0)
2 [ ]x t

(1)
11w

(1)
12w

(1)
1 [ ]s t (1)

1 [ ]x t
(2)
11(0)w

(2)
11(1)w

(2)
11(2)w

(2)
11 [ ]y t

(2)
11(1)v

(2)
11(2)v

(2)
1 [ ]x t

 
Fig. 19. Locally recurrent ARMA model for a Multialyer Perceprton. 

The Causal Recursive Back Propagation learning rules are: 
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The CRBP algorithm is computationally simple and the application to the video 
compression produce some suitable performances.  

The proposed architecture is applied as Neural coder in the Coding Block refer-
ring to the architecture shown in figure 10; so according to the general architec-
ture, this neural coder compresses, receive image block from quad tree segmenta-
tion. 

Learning of a locally recurrent neural network for the video compression, is a 
delicate issue due to fact that recurrent networks are sensitive to a large number of 
factors, as for instance the type of videos content in the training set, or the video 
length, or the way in which the examples are presented.  

Such sensitivity can compromise the correct learning of the network, altering so 
the end results e.g. it could produce artifacts on the restored video. Most common 
artifacts are the so called  “regularities” and the so called “memory effect”, both of 
them can be avoided by a special care into training and designing the structure.   

An example of “regularities” is shown in figure 20; it can be avoided by reduc-
ing the length of the video training set. 
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Fig. 20. Regularities effects (into the boxes) in two frames of a video sequences. 

In phase of video restoring, it can happen that, especially on uniform color 
backgrounds, the image of objects not more present in the scene remains im-
pressed, because of the presence of the delay lines in the synapse, this is the so 
called “memory effect” (see it is shown in figure 21).  This artifact can be avoided 
by a special care in dimensioning the neurons dynamics and than the number of 
tap of the ARMA filter.    

 
 

a) 

    

 
b) 

 
Fig. 21. The memory effect in two frames of a video sequences 

In this context a lot of advantage can be found by using locally recurrent neu-
rons only in the second layer of the structure of figure 14. 

It could be observed, from the examples of figures 20-21 too, that most of arti-
facts are in the “background” of the scene.  

Recurrent Neural Networks reach a good learning level in more dynamic part 
of the scene but not in the static background sections. 

In order to overcome this problem after the segmentation of the scene could be 
used an hybrid approach to perform the training of the network. 

Since static neural networks perform better more static subscenes this can be 
used to perform the compression of the 16× 16 blocks, the one with the lowest ac-
tivity; recurrent neural network can be used to code 4 × 4 and 8 × 8 block with an 
high detail level.   

  This approach achieve a different processing for the lower and the higher ac-
tivity blocks, not only for the network size but also in structure and learning. Per-
formance obtained with hybrid approach are collected in the table 2. 

 

 Susi_02 Susi_03 Susi_04 
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6 Neuron hidden 
Laye  

5 Neuron hidden 
Laye 

4 Neuron hidden 
Laye 

BR (kbs) 433,38 372,51 319,32 

PSNR (dB) 28,92 28,45 28,01 

Table 2. Mean value of  bit rate and peak signal to noise ratio reached with three different 
kind of neural network all of them are IIR MLP set with the dynamic synapse.  

 
 

 

   

 

 
 

Fig. 22. Frames of the Suzi video compressed and recovered with Suzi_02 (showing no 
block effect) network and Suzi_04 (showing block effect). 

However the improvement of recurrent neural network with respect to results 
obtained with a static network are not so evident in comparing results of table 2 
with the one collected in table 1. 

The evidence on that improvement should be observed in seeing video se-
quence: more fluid movements are performed.  
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