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Abstract

In this paper a review of architectures suitable for nonlinear real-time audio signal processing
is presented. The computational and structural complexity of neural networks (NNs) represent in
fact, the main drawbacks that can hinder many practical NNs multimedia applications. In partic-
ular e,cient neural architectures and their learning algorithm for real-time on-line audio process-
ing are discussed. Moreover, applications in the -elds of (1) audio signal recovery, (2) speech
quality enhancement, (3) nonlinear transducer linearization, (4) learning based pseudo-physical
sound synthesis, are brie1y presented and discussed.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In the last years the technologies related to multimedia applications have greatly
increased and the neural networks (NNs) paradigm seems to be one of the best
methodologies for the treatment of incomplete information and di,cult nonlinear digital
signal processing (DSP) problems [37]. NNs, in fact, represent in some way a central
technology for many ill-posed data processing: due to universal approximation capa-
bilities NNs are able to approximate unknown systems based on sparse sets of noisy
data (see e.g. [29,27,11]). Although a lot of NN’s applications concern classi-cation
problem, a growing interest has been devoted in nonlinear time series prediction and in
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complex nonlinear dynamic modeling [47]. Moreover, one of the main drawbacks that
can hinder practical NNs application in multimedia, depends on their computational
and structural complexity.
Classical approaches for nonlinear DSP are based on speci-c and e,cient architec-

tures e.g. median and bilinear -lters, some spectral analysis techniques or on generic
nonlinear architectures suitable for a large class of problems but usually complex e.g.
Volterra -lters, non linear state equations, polynomial -lters, functional links, etc.,
[64,50,41,45,32]. In other words typical nonlinear DSP approaches consist of design
speci-c algorithms for speci-cs problems.
Neural networks (the multi-layer perceptron (MLP) [14,30,9], the time delay neural

networks (TDNN) [38,65], and recurrent neural networks (RNN) [69,68,66,7,2,21,25]),
have been used extensively in the past for functional approximation of continuous
nonlinear mappings, (see e.g. [29,27,11,38,65–69,6,7,2,21,25,19]). Successful functional
approximation depends on appropriate selection of the parameter values. This selection
is usually made through supervised learning where a training set of input-output pairs
is available and the network is trained to match this set according to some pre-speci-ed
criterion function. When the criterion function is the sum of squared errors, a popular
algorithm is the well-known backpropagation (BP) training procedure.
The MLP and RNNs represent an adaptive circuit which extend and generalize the

simple adaptive linear -lter in nonlinear domain. By adding in some way delay lines
NN -lters can be viewed as an extension of linear adaptive -lters to deal with nonlinear
modeling tasks [29,67,28,43]. It is well known, in fact, that a large amount of DSP
techniques are based on linear models, but in some cases the nature of the problems
are nonlinear and obviously in these cases nonlinear general purpose architectures are
needed.
Despite the formal elegance of the neural model, several problems should be solved.

First of all is the model selection. Given an input-output relation the problems are:
(1) the determination of the inputs number, (2) the number of neurons in the hidden
layers in order to have a correct approximation and (in the case of dynamic processes)
(3) how put memory (delay line) in the model.
Although there are several papers dealing with the problem of network topology

determination, usually the numbers of layers and neurons are speci-ed by heuristic
procedure.
The aim of this paper is the examination of some discrete-time neural architectures

for real-time on-line nonlinear signal processing (especially audio processing) applica-
tions. We review some general models of time-delay multilayer NNs and in particular
some kinds of recurrent networks with local feedback called locally RNN (LRNN).
We review, also, NNs architectures with suitable 1exible activation functions which
allow: very small networks, easy and fast learning processes and mitigate the problem
of topology determination.
The paper is organized as follows. Section 2 presents a review of some neural

architectures for real-time on-line signal processing. Multilayer static and dynamic
time-delay neural networks, adaptive spline neural networks, multirate subband neu-
ral networks and their on-line learning algorithms are also reviewed and discussed in
the context of DSP applications.
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Section 3 presents some NNs based nonlinear audio processing applications. In
particular we discuss about: audio signal recovery, speech quality enhancement, non-
linear transducer linearization, and -nally, a learning based pseudo-physical sound syn-
thesis is presented.

2. Neural architectures for real-time audio DSP

2.1. MLP with external memory

Although linear adaptive -lter theory is well-known and consolidated, its exten-
sion to the nonlinear domain is a -eld of great interest and in continuous expansion.
In this Section some neural architectures suitable for adaptive nonlinear -ltering are
presented.
The formulation of transversal and recursive -lters can be easily extended to the

nonlinear domain: in the case of discrete-time sequences the -lter can be described
through a relationship between the input sequence {x[t]; x[t − 1]; : : :} and the output
sequence {y[t]; y[t − 1]; : : :}. The general form are expressed as

y[t] = �{x[t]; x[t − 1]; : : : ; x[t −M + 1]}; (1)

y[t] = �{x[t]; x[t − 1]; : : : ; x[t −M + 1]; y[t − 1]; : : : ; y[t − N ]}: (2)

In the -rst expression the output is a nonlinear function of the inputs (present and
past samples): in other words Eq. (1) represents a nonlinear generalization of linear
-nite impulse response -lter (FIR). The output signal y[t] in equation (2) is also
a function of past output signal: so it represents a nonlinear generalization of linear
in-nite impulse response -lter (IIR). The equation (2) represents a general form usu-
ally called nonlinear autoregressive moving average (NARMA) model. The indexes M
and N , represent the -lter memory length and the couple (N;M) is de-ned as -lter
order.
The easiest way to get dynamics from a MLP network is the use of external tapped

delay lines (TDL) [43], [see Figs. 1 and 2] subsuming many traditional signal process-
ing structures, including FIR-IIR -lters, and gamma memory NN [16], for which the
delay operator, used in conventional TDL’s, is replaced by a single pole discrete-time
-lter. These networks are universal approximators for dynamic systems [9,10], just as
feedforward MLP’s are universal approximators for static mappings [14,30].
Concerning the previous general structure we can assert: (1) the problem of the

determination of the optimum -lter order (N;M) requires some a priori knowledge of
the statistics of the input signal; (2) -ltering of high non-stationary signals requires that
the -lter free parameters (w∈R) can vary fast so that it is possible to track the input’s
statistic variation. Moreover, if in equations (1) and (2) � is a linear function, there
exists a huge number of methods for the determination of the free -lters parameters
(-lter synthesis). A family of adaptive algorithms, suitable for transversal -lters, is
derived from the least square error minimization [29,28].



596 A. Uncini / Neurocomputing 55 (2003) 593–625

1z−

1z−

1z−

[ ]x t

[ 1]x t −

[ ]x t M−

[ ]y t

Output signal 

Input signal 

Fig. 1. BuLered MLP structure with input TDL.
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Fig. 2. BuLered MLP with input and output TDL. Switch position: (a) signal correction; (b) error correction.

2.2. Learning algorithm for MLP with external memory

When a MLP network is used as nonlinear adaptive -lter its activity is de-ned from
the input sequence x[t] (with possible in-nite length) and from the desired signal d[t].
For each sample t an error �[t] is de-ned as a diLerence between the desired signal d[t]
and the network’s output y[t]: �[t]=d[t]−y[t]. As an example in system identi-cation
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problems d[t] represents the output of the system to be modeled while in prediction
task d[t] is equal to the input signal at time t + � (such that, d[t] = x[t + �]).
The free network parameters w∈R (or weights) are determined by the minimization

of a certain error norm (usually L2). In the case of static networks the most adopted
criterion is the so called Least Square minimization (LS) and the objective function to
minimize is de-ned as

J (w) =
1
K

K∑
p=1

�(p)2: (3)

The learning algorithm minimizes the quantity J (w) over a -nite sample set K
(learning phase); then the network is used with the “frozen” weight (forward mode).
In the case of adaptive -lters the error minimization follows an on-line procedure: i.e.

the error is minimized during the -ltering operation. This means that: (1) the sequence
is considered of in-nite length, (2) the process can be time-variant. The learning, that
can be viewed as a dynamical process, is implemented through a -nite length memory
mechanism (called forgetting mechanism). The time memory limitation is implemented
through a sliding window of Tc length (usually of rectangular form). The functional
to be minimized is then

J (t;w) =
1
2

t∑
p=t−Tc+1

�(p)2: (4)

The choice of Tc is strongly problem-dependent and it is correlated to the degree of
input signal nonstationarity.
The learning algorithm for static neural networks with external delay lines is then the

simple well-known backpropagation algorithm (e.g., see [29]). The dynamic behavior
is, in fact, delegated to the network feed mechanism: the input sequence feeds the
network through a sliding window (the delay line) and the input samples are translated
at each learning step [43].
In parallel with the development of adaptive nonlinear -lters with FIR structures, a

recursive IIR architecture can be implemented (see Fig. 2). The motivation for such
developments are similar to those arising in ordinary linear -ltering applications. A re-
cursive structure can potentially produce comparable results with far fewer coe,cients,
and consequently with a much lower computational burden. This potential is not eas-
ily obtained, however, since the computational gain is oLset by increased problems in
guaranteeing learning mode stability and convergence.
Although the learning in transversal FIR networks is univocally de-ned, for recursive

networks with output feedback delay line, we have two learning modalities [48]: (1)
signal correction; (2) error correction. In signal correction modality the network is fed
with desired signal {d[t − 1]; d[t − 2]; : : : ; d[t −N ]} while it the error correction mode
we use the delayed output signal {y[t − 1]; : : : ; y[t − N ]}.
For linear case the error correction mode shows better convergence property [48],

but the initial weights condition may produce some numerical stability problems. So in
a practical case we start the learning in signal correction mode and after few iteration
we switch on error correction mode.
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2.3. MLP with internal memory

In order to have NNs with dynamic behavior the buLer can be applied to the input
of each neuron. In this way each NN’s weight (or synapse) can be implemented as an
FIR (MA model) or IIR -lter (ARMA model).
The main example of implementation of feedback is the classical fully recurrent neu-

ral network [69,68], i.e., a single layer of neurons fully interconnected with each other,
or several such layers. Such recurrent networks however exhibit some well known dis-
advantages: a large structural complexity (O(n2) weights are necessary for n neurons)
and a slow and di,cult training. In fact they are very general architectures which
can model a large class of dynamical systems, but on speci-c problems simpler dy-
namic neural networks which make use of available priori knowledge can be better
used.
In the past few years, a growing interest has been devoted to methods which allow

introduction of temporal dynamics into the multilayer neural model. In fact the related
architectures are less complex and easier to train with respect to the fully recurrent
networks. The major diLerence among these methods lies in how the feedbacks are
included in the network: diLerent architectures arise depending on how the ARMA
model is included in the network.
The -rst architecture is the IIR-MLP proposed by Back and Tsoi [2], where static

synapses are substituted by conventional IIR adaptive -lters (see Fig. 3(a)). The sec-
ond architecture is the local feedback recurrent multi-layer network (LF-MLN) stud-
ied by Frasconi et al. [21]. The output of the neuron summing node is -ltered by
an autoregressive (AR) adaptive -lter (all poles transfer function) before feeding
the activation function (activation feedback); in the most general case the synapses
are FIR adaptive -lters (see Fig. 3(b)). The LF-MLN is a particular case of the
IIR-MLP, when all the synaptic transfer functions of the same neuron have the same
denominator.
The third structure is the output-feedback LF-MLN by Gori et al. [25]. In this

architecture the IIR -lter is not simply placed in the classical neuron model but is
modi-ed to make the feedback-loop pass through the nonlinearity, i.e., the one time
step delayed output of the neuron is -ltered by a FIR -lter whose output is added
to the inputs contributions, providing the activation. Again in the general model the
synapses can be FIR -lters (see Fig. 3(c)).
At last Fig. 3(d) shows the architecture proposed by Mozer in [42] (with

one delay feedback dynamic units in the -rst layer only) and by Leighton and
Conrath in [39] (multiple delays and no restriction on the position of dynamic units).
It is again a multilayer network where each neuron has FIR -lter synapses and an
AR -lter after the activation function (AR-MLP). It is easy to see that this
network is a particular case of the IIR-MLP, followed by linear all-pole
-lters.
Due to the use of powerful dynamic neuron models, one of the major advantages

of locally recurrent neural networks (suitable for audio DSP applications) with respect
to buLered MLP’s or fully recurrent networks is that a smaller number of neurons are
required for a given problem.
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Fig. 3. Dynamic neurons using: (a) IIR/FIR synapses (FIR-IIR/MLP); (b) locally feedback multilayer network
(LF-MLN); (c) output feedback; (d) autoregressive MLP.
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Fig. 4. Example of a simple IIR-MLP which shows the notation.

2.4. Learning algorithm for MLP with internal memory

In the following we will consider only locally recurrent neural networks, particularly
IIR-MLP and output feedback MLNs (see Fig. 3(c)) which are the most general and
interesting architectures (concerning the learning algorithm FIR and activation feedback
structures they can, in fact, be viewed as theirs particular cases).
Some algorithms to train such networks exist, in this paper we describe a gradient-

based algorithm for locally recurrent neural networks presented in [7], called recursive
back-propagation (RBP) whose on-line version, (causal recursive backpropagation
(CRBP)) presents some advantages in audio DSP on-line applications.
An IIR-MLP consists in a neural network where each synapse is replaced with a

transfer function with poles and zeros, which are the AR and MA parts respectively.
Using a notation introduced in [67], extended in [7], and with reference to Fig. 4

the forward phase can be described as

y(l)
nm[t] =

Llnm−1∑
p=0

w(l)
nm(p)x

(l−1)
m [t − p] +

I lnm∑
p=1

v(l)nm(p)y
(l−1)
nm [t − p]; (5)

s(l)n [t] =
Nl−1∑
m=0

y(l)
nm[t]; x(l)n [t] = sgm(s(l)n [t]); (6)

where the indexes (Llnm − 1) and I lnm represent the MA and AR parts, respectively,
of the nth neuron of the lth layer relative to the output of the (l − 1)th layer. Nl

represents the number of neurons of the lth layer. The quantities w(l)
nm(p) and v(l)nm(p)

represent respectively the coe,cients of the MA and AR parts of the corresponding
synapse (the weights w(l)

n0 are the bias terms).
For (5), the direct form I of the IIR -lter has been used [28], but other structures

are possible. In particular, direct form II structures allow reduction in the storage
complexity as well as in the number of operations [28], both in forward and backward
computation. For the sake of clarity the expression corresponding to (5), in the IIR
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-lter usual notation is reported

y[t] =
M−1∑
p=0

w[t]x[t − p] +
N−1∑
p=1

v[t]y[t − p]; (7)

where y[t] is the output, x[t] the input of the IIR -lter, w[t] are the coe,cients of the
MA part, v[t] of the AR part and the orders of the MA and AR parts are (N − 1) and
(M − 1), respectively. Using diLerent notation the input–output relation expressed by
Eq. (7) can be written as

y[t] =
(

B(t; q−1)
1− A(t; q−1)

)
x(t); (8)

where

A(t; q−1) =
N−1∑
p=1

vp[t]q−p; B(t; q−1) =
M−1∑
p=0

wp[t]q−p (9)

and the term q−1 is the delay operator, i.e. q−�(s[t]) = s[t − �].
In order to derive the learning algorithm, let �n[t] = dn[t] − x(M)

n [t], the functional
(4) to be minimized (called in this case global error) becomes

J (�) = E2 =
T∑
t=1

NM∑
n=1

�2n[t]; (10)

where �, represents both w and v weights (�=w ∪ v), T is the duration sequence and
the index NM represents the number of net outputs i.e. the number of neurons in the
M th layer.
Let us de-ne the usual quantities “error” and “delta” of the backpropagation algo-

rithm

e(l)n [t] =−1
2

@E2

@x(l)n [t]
; !(l)n [t] =−1

2
@E2

@s(l)n [t]
(11)

and, as in the static case, it holds

!(l)n [t] = e(l)n [t]sgm′(s(l)n [t]): (12)

It is possible to derive the RBP learning algorithm which is described in the signal
1ow graph (SFG) of Fig. 5 (see [7] for the proof).
In the SFG of Fig. 5 there is a feedback path with a positive index delay operator

(q1) so the RBP algorithm is non-causal (i.e. the weights variation depend upon the
future time index t+1). For this reason RBP can be implemented only in the so called
batch mode, i.e. the weight adaptation can be performed at the end of the window
time T by the accumulation of the weight variations computed at each learning step
t. For many DSP (in particular audio) applications due to the intrinsic input-output
delay, batch algorithms can not be used. For this reason an on-line algorithm derived
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Fig. 5. Signal Flow Graph of RBP of the IIR-MLP of Fig. 4.

′

Fig. 6. Signal Flow Graph of causalized recursive backpropagation CRBP of the IIR-MLP of Fig. 4.

from the RBP and called causal recursive backpropagation (CRBP) has been proposed
in [6,7]. With reference to the SFG reported in Fig. 6, CRBP algorithm introduces a
suitable number of delays in the weights adaptation scheme in order to remove the
noncausality of the RBP. In this way the weights-variation (∇") for the lth layer can
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be written as

" (l)[t + 1] = " (l)[t] +∇" (l)[t + 1− Dl]; (13)

where Di represents a delay

Dl =




0; if l=M;
M∑

i=l+1

Qi if l¡M:
(14)

The CRBP algorithm includes as particular cases backpropagation (BP) [29,67], tem-
poral backpropagation (TBP) [69], backpropagation for sequences (BPS) [25], and
Back–Tsoi algorithm [2]. Moreover it allows the training of generalized output and ac-
tivation feedback MLN’s which have no constraint on the position of the dynamic units,
implementing communications among them, as suggested in [51] for a better modeling.

2.5. Neural network with <exible spline activation function

Introduced in [62,26] the adaptive spline activation function neural networks (ASNNs)
are built using neurons with 1exible activation function (FAF). This FAF is imple-
mented by a small look-up-table (LUT) containing some spline control points. The
neuron’s output is then computed by a simple interpolation scheme over the LUT
parameters using Catmull-Rom (CR) or B-spline cubic basis. During the learning phase,
the shape of the activation function can be modi-ed by adapting the spline control
points.
It is well-known that under certain regularity conditions, the NN representation capa-

bilities depend on the number of free parameters, whatever the structure of the network
[1]. Hence, FAF can reduce the number of interconnections and therefore the overall
network complexity, since they now contain free parameters. It follows that very small
networks can be able to solve di,cult nonlinear problems: so ASNN represents a suit-
able paradigm for real and complex domain signal processing applications [58] and
due to this interesting performance more recently they have been successfully used
in an unsupervised context for blind signal processing problems [54]. Moreover, from
theoretical points of view, the authors in [62] and in their further developments [55]
demonstrated that such neuron architecture can improve approximation and generaliza-
tion capabilities of the whole network. In particular, this neuron architecture, sometimes
called generalized sigmoidal (GS) neuron, presents several interesting features: (1) it
is easy to adapt, (2) it can retain the squashing property of the sigmoid, (3) it has the
necessary smoothing characteristics, (4) it is easy to implement both in hardware and
as software simulations.
The ASNN has a multilayer structure and can be implemented by using both standard

and dynamic neurons like in IIR-MLP.
Referring to papers [62,26] for more details, here we give some notes on the real-

ization of an adaptive 1exible activation function.
The splines are, generally, smooth parametric curves, divided into multiple tracts;

they are also able to preserve the continuity of derivatives at the joining points. In the
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planar case the graph Fi(u) of the ith curve span is represented by

Fi(u) = [Fxi(u); Fyi(u)]T; (15)

where u∈ [0; 1) is the local span parameter, T is the transpose operator and the
two polynomial functions Fxi(:), Fyi(:) describe the curve tract behavior in the two
coordinates x and y. The ith curve spline basis functions tract can be written in
the form

Fi(u) =
d∑

k=0

Qi+kbi;d(u) =




d∑
k=0

qx; i+kbi;d(u)

d∑
k=0

qy; i+kbi;d(u)


 ; (16)

where bi;d(u) is the ith element of the spline basis (a polynomial of degree d in the
variable u), and Qi+k = [qx; i+k ; qy; i+k ]T are the (d+ 1) control points of the ith curve
tract: moving such points on the real plane will aLect the curve shape.
We have chosen to represent the activation functions through the concatenation of

even more local spline basis functions, controlled by only four coe,cients. To keep
the cubic characteristic, we have used a Catmull-Rom [8] or B-spline [59] cubic spline.
Referring to Fig. 7, the ith curve span in (16), expressed in matrix form can be

rewritten as

Fi(u) = T ·M ·Qi ; (17)

where T = [u3 u2 u 1], Qi = [Qi Qi+1 Qi+2 Qi+3]T, and the matrix M assumes the
value:

M =
1
2




−1 3 −3 1

2 −5 4 −1

−1 0 1 0

0 2 0 0


 ; (18)
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for Catmull–Rom spline base and

M =
1
6




−1 3 −3 1

3 −6 3 0

−3 0 3 0

1 4 1 0


 ; (19)

for the B-spline base.
From Eq. (17) such a spline (see Fig. 7 for details) interpolates the points Qi+1 (u=

0) and Qi+2 (u = 1) and has a continuous -rst derivative (B-spline also the second),
useful for the backpropagation-like learning algorithm.
In general, Eq. (17) represents a curve and to obtain a function we have ordered

the x-coordinates according to the rule qx; i ¡qx; i+1 ¡qx;i+2 ¡qx;i+3.
To -nd the value of the local parameter u we have to solve the equation Fx; i(u)=s0,

where s0 is the activation of the neuron. This is a third degree equation, whose solution
can make the numerical burden of the learning algorithm heavier. The easiest alternative
consists in setting the control points uniformly spaced along the x-axis (Nx is the step):
this choice allows us to reduce the third degree polynomial Fx; i(u) to a -rst degree
polynomial and the equation for u becomes linear.

Fx; i(u) = uNx + qx; i+1: (20)

Moreover, the -xed parameter Nx is the key tool for smoothness control. Now we
can calculate the output of the neuron by Fy; i(u).
As we decided to adapt only the y-coordinates of the spline knots, we must initialize

them before starting the backpropagation learning: for this reason we take, along the
x-axis, N + 1 uniformly spaced samples from a sigmoid, or from another function
assuring universal approximation capability [14,30].
Referring to Fig. 8 for the formalism, the FAF is composed of two functional blocks.

The -rst block, called GS1, performs the mapping of the linear combiner output to
the parametric spline domain, i.e. the x-axes inversion (equations inside block GS1
of Fig. 8).
The block GS2 computes the neuron output by using the activation function’s control

points, stored in the GS2-LUT, and the polynomial coe,cients of Eq. (17). It follows

xlk = F (l)
k; i(l)k

(u(l)k ); (21)

where the function F (l)
k; i(l)k

is the i(l)k th tract of the activation spline curve of the kth

neuron of the lth layer.

2.6. Learning algorithm for the ASNN

The learning algorithm for ASNN can be based on the classical backpropagation
where, referring to Eq. (10), the functional J to be minimized is a function of both
the weights w(l)

kj and the local activation function free parameters Q(l)
ki . Using the same
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notation proposed in previous Section, for the tth step of the learning phase we have
the following recursive equation:

FOR l=M; : : : ; 1
FOR k = 0; : : : ; Nl,

FOR j = 0; : : : ; Nl − 1,

e(l)k =




(dk − x(l)k ); l=M;

Nl+1∑
p=1

!(l+1)
k w(l+1)

pk ; l=M − 1; : : : ; 1;
(22)

!(l)k = e(l)k


 dF (l)

k; i(l)k

(u)

du

∣∣∣∣∣∣
u=u(l)k


 1

Nx
; (23)

Nw(l)
kj = ,!(l)k x(l−1)

j ; (24)

w(l)
kj [t + 1] = w(l)

kj [t + 1] + Nw(l)
kj [t]; (25)

FOR m= 0; : : : ; 3

NQ(l)
k; (i(l)k +m)

= e(l)k

(
@F (l)

@Qk; (i(l)k +m)

(l)
)

= ,qe
(l)
k b(l)k;m(u

(l)
k ); (26)

Q(l)
k; (i(l)k +m)

[t + 1] = Q(l)
k; (i(l)k +m)

[t + 1] + NQ(l)
k; (i(l)k +m)

[t]; (27)
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(in Eqs. (22)–(26), time index t is omitted) where N represents the local approximation
of the function error gradient, the terms , and ,q are the learning rate for the weights
and the activation function parameters respectively and the derivative of F(u) is simply
a second order polynomial.
The terms Nw(l)

kj [t] and NQ(l)
k; (i(l)k +m)

[t] are obtained by computing the error deriva-

tive with respect to the weights and to the control points of the activation function,
respectively. Note that the generalization to IIR-MLP architecture is straightforward.
For the control point adaptation (27), the parameter m rang from 0 to 3, restricting

the update to only 4 points. In this step, we consider the parametric value u -xed (i.e.
u = u(l)k ), so the GS2 block is represented by a function of only four variables (the
four control points).

2.7. Subband neural networks

It is well know from linear and adaptive -lter theory that subband techniques present
several advantages with respect to the full-band approach [70,13,18,44,22,46].
First of all, they achieve computational e,ciency by decimating the signal before

the adaptive processing. In fact the subband linear adaptive -lters present impulse
responses that are shorter than full-band adaptive -lter although the total number of
the free parameters remains the same.
A second interesting property is due to the splitting of the input signal: the eigenval-

ues spread of the subband-signals’ autocorrelation function is reduced and consequently
least-squares-like adaptation algorithms present better convergence performance [70,46].
More recently, a subbands multirate architecture has been extended in NN context.

It is well known, in fact, that the needed long training can hinder many real-time NN
applications. So, since smaller networks are needed for each subband, speed-up both
the convergence time and the forward-backward computation, the multirate approach
has been used in a on-line (or in continuous learning) mode as a simple nonlinear
adaptive -lter [12].
An important topic of multirate signal processing regards the choice of the -lter

banks. Filter banks, in fact, decompose full-band signal spectra in a number of directly
adjacent frequencies subbands and recombine the signal spectra by the use of low-pass,
band-pass, and high-pass -lters. Moreover, in the last two decades several techniques
and topologies for the design of -lter banks have been proposed. A key part of the de-
sign can concern perfect vs. almost perfect reconstruction or uniform vs. non-uniforms
bands. [13,18].
The uniform -lter bank consists of band-pass -lters, partitioning signal spectra into

directly adjacent bands of equal width (see Fig. 9(a)). All -lters have the same band-
width and the central frequencies are uniformly spaced on the frequency axis (see for
example [13]). The octave -lter bank belongs to the Q constant -lter bank family, i.e.
the ratio between nominal bandwidth amplitude -fk and its central frequency fk is
constant. The bank is implemented in a tree structure as Fig. 9(b) shows: two-channels
-lter banks, consisting of a low-pass -lter HLP(z) and a complementary high-pass -lter
HHP(z), are used as a band separating -lter [18].
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Fig. 9. (a) The M -channel maximally decimated uniform -lter bank. (b) A tree-structured octave analysis
-lter bank.

A subband neural prediction architecture used for audio signal recovery and described
in next Section is shown in Fig. 10.

3. Neural network applications to audio signal processing

3.1. Audio signal recovery

The introduction of digital systems in audio signal -eld let grow the problem of
digital audio restoration. Due to the media changing of the new audio-video technology
the old analog supports are replaced by digital samples that can be stored as a streaming
of numerical data.
Audio restoration is necessary whenever the original signal is corrupted by back-

ground or impulsive noise, or whenever a sequence of consecutive samples is missing.
Situations of the -rst type are common with old gramophone recordings: the back-
ground noise is due to transducer equipment, while impulsive noise appears as a result
of natural surface irregularities, scratches and dust particles. Situations of the second
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Fig. 10. Subband neural prediction scheme for on-line audio signal processing. Whether output signals are
taken from the uniform analysis -lter bank or from the octave analysis -lter bank, the situation is very
similar.

type are common with old magnetic tapes, when due to demagnetization eLects a frag-
ment of a musical track is completely missing. The case of impulsive noise and the
case of a missing sequence are similar, because only few data are involved, while
background noise involves all samples. So two diLerent approaches must be adopted.
We concerned on degradations of the -rst type, in which only a localized sequence
must be processed to reconstruct the original signal. This operation is also necessary
when reduction of impulsive noise is required: a preprocessing stage localizes noise
positions and then a reconstruction stage of corrupted samples is needed [60,61,24].
In [63] a method for missing data reconstruction based on the assumption that signal

can be modeled as P order autoregressive process is presented. The model parameters,
which are the taps of a linear predictor -lter, are calculated using a signal block in-
cluding missing data. Then the missing samples are predicted in forward and backward
mode and the attained results are combined in suitable manner to give missing se-
quence. The main drawback of autoregressive model based approach is an increasing
model order for long sequence reconstruction. Model order must be two or three times
the length of missing data sequence. This method is not very appropriate for recon-
structing long sequence (over about a hundred of samples at 44:1 KHz sampling rate
[60]).
Linear prediction methods have been extended to the nonlinear case using NNs

[15]. A P inputs MLP NNs has been used, with hidden layer neurons having bipolar
sigmoidal activation function, and a linear neuron in the output layer. The net has been
trained using several examples extracted randomly from diLerent uncorrupted signals. A
forward and a backward prediction are performed in a similar manner as a linear case.
Some experiments have shown performances of the same level of the linear predictor.
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Improvement has been obtained adding a training stage using samples before and after
the missing data, allowing the net to learn the local characteristics of the signal. Results
remain nevertheless comparable with those obtained using linear prediction.
A dual approach is missing data reconstruction in the frequency domain [40]. Spectral

components of signal are analyzed using a short time Fourier transform (STFT) analysis
with overlapping windows.
More recently a subbands signal reconstruction method, which realizes a trade oL

among techniques based on time and frequency domains has been proposed [12]. Two
diLerent -lter banks multirate architectures have been implemented: M channels uni-
form -lter bank and octave -lter bank. Each subband is processed by a nonlinear
predictor realized using the ASNN architecture (see Fig. 10).
While previous NN approaches involve a long training process, thanks to the small

network architecture, needed for each subband and to the FAF, which speeds-up the
convergence time and improves the generalization performances, the ASNNs are able
to work in on-line (or in continuous learning) mode as simple nonlinear adaptive -lters.
The reconstruction of L consecutive missing samples in an audio signal may be

considered an extrapolation problem, as represented in Fig. 11. Given the signal trends
on the left and on the right of the missing sequence boundaries our task is to -ll the
gap.
Input signal x[t] is properly selected so that missing sequence is centered. At the

output of analysis -lter bank we have M signals, x1[t]; : : : ; xM [t], where M is the num-
ber of channels. A forward and backward prediction algorithm is applied to every xi[t]
signal and results are combined using weighing windows as in a cross fade operation.
Signals with missing data gap -lled by prediction results are then passed to synthesis
-lter bank to obtain full band reconstructed signal y[t]. Fig. 12 shows experimental
results of a 45 ms of signal reconstruction using a octave -lter bank and ASNNs (for
more details see [12]).

3.2. Quality enhancement of speech signal

In this section a system for speech quality enhancement (SQE) is presented. A SQE
system attempts to recover the high and low frequencies from a narrow-band telephone
speech signal, usually working as a post-processor at the receiver side of a transmission
system. The system operates directly in the frequency domain using complex-valued
spline neural networks [58].
It is known that a signal sampled at 16 KHz (wide-band speech) has a nominal

frequency band from 0 to 8 KHz, while the narrow band telephone speech is limited
between 300 and 3400 Hz. The problem is therefore to recover from this narrow band
signal the two missing frequency bands: nominally from 0 to 300 Hz and from 3400
to 8000 Hz. This should be made possible by the human speech production physical
mechanism, which relates the frequency contents of diLerent bands.
Let s[t] be the narrow-band speech signal whose short-time Fourier transform (STFT)

is St(ej!k ), with St(ej!k ) �= 0 only for !∈ [!1; !2]. Let s̃[t] be the corresponding
wide-band signal; its STFT is now S̃ t(ej!k ) �=0 for !∈ [!0; !N ] with the position
!0 ¡!1 and !2 ¡!N .
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Fig. 11. Forward–backward prediction scheme: example 18 ms (about 800 samples) of missing and recon-
structed samples of music audio signal.

A SQE system postulates the existence of an operator 4 (in general nonlinear),
called quality enhancement operator (QEO), such that:

S̃ t(ej!k ) =4[St(ej!k )] (28)

or, in terms of STFT:

s̃[t] =
∑
m

[∑
k

4[St(ej!k )]ej!k t

]

=
∑
m

[∑
k

4

[∑
�

s[�]w[m− �]e−j!k�

]
ej!k t

]
; (29)

where w[:] represents the overlapping time window.
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With reference to Eq. (29), the SQE system performs a direct STFT on a narrow-band
signal up-sampled to 16 KHz, recovers the broad-band signal through the nonlinear op-
erator, and performs an inverse STFT. However, this simple scheme does not attain
good performances, since the recovery processes for the lower and the higher band
are very diLerent. Moreover the 4 operator could degrade the narrow-band frequency
contents of the original speech signal. Better performances hence can be obtained by
splitting the 4 operator in two diLerent operators 4L and 4H, for the lower and higher
frequencies, respectively. The original narrow-band information are sent to the output
without any processing.
The system implements both the 4L and 4H operators with properly trained com-

plex adaptive spline neural networks, respectively CASNN1 for the -rst operator and
CASNN2 for the second. However, since it is known that the frequency contents of
the higher band (3600–8000 Hz) is strongly related to the contents of the narrow-band
frequencies mainly for voiced sounds, our SQE system processes diLerently high fre-
quency voiced and unvoiced sounds. For the -rst the CASNN2 properly trained only
on voiced speech is employed, while for the unvoiced speech the scheme proposed in
[71] is also used. The overall SQE scheme is shown in Figs. 13 and 14 (see [57] for
more details).

3.3. Loudspeaker linearization by predistortion

Loudspeaker is an electrodynamic transducer used to convert electrical power in-to
acoustic power. A general scheme of a loudspeaker is shown in Fig. 15.
An ideal transducer has in the motor mode a constant relationship between electrical

input (the current) and mechanical force output. Let F the force, v the velocity, I the
current, l the wire of the coil length, E the electromotive force and B the 1ux density;
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Fig. 13. Scheme of the SQE system. V/UNV is a voiced/unvoiced selector and w[n] represents the overlapping
time window.

Fig. 14. Time-frequency plots of speech signal containing utterances from diLerent female speakers: (a)
original wide-band signal; (b) output signal of the proposed SQE system.

in elementary treatments, the behavior of moving-coil systems is often represented by
F = BlI and E = Blv. The quantity (Bl) is sometimes called force factor or motor
coupling factor.
Real loudspeakers are hard nonlinear dynamic devices. In fact, there are several

nonlinearity sources that can be grouped in three principal classes: electromagnetic,
mechanical and acoustical.
As an example, an electromagnetic nonlinearity source can be due to the fact that

in the case of constant-current drive the force applied to the coil is dependent on
its position inside the magnetic circuit. The force (F =

∫
l B dl) is a function of the

voice-coil excursion x i.e. the coil can go away from the region where the magnetic
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Fig. 15. Simple loudspeaker scheme.

1ux density B can be considered constant. A typical force versus displacement is shown
in Fig. 16(a).
From the mechanical point of view the force versus displacement curve of the loud-

speaker spider 1 and outer rim are not straight lines and show hysteresis. A typical
displacement versus force curve is shown in Fig. 16(b). Moreover, the excursion capa-
bility of the voice coil is limited (mechanical clipping): this non linearity only occurs
at extreme drive level.
The acoustical nonlinearity sources are due to nonlinear acoustic wave radiation,

Doppler eLect, etc. Usually they can be neglected respect to the electromagnetic and
mechanical more evident nonlinearity sources.
Fig. 17 shows the frequency response and distortions of an hi-- woofer (model

SIPE-ASW300) enclosed in a 25 l box used in the following described experiments.
In the past some loudspeaker predistortion architectures were developed either in

closed-loop or open-loop control approaches [31,35]. However the design of controllers
dedicated to loudspeaker linearization are based on: (1) the identi-cation of a precise
loudspeaker model (for example based on the Volterra expansion [64,31,36]); (2) the
learning in some way (closed form or using adaptive learning based approach) the
predistorter inverse model.

1 In early loudspeakers, the 1exible hinge that held the moving system in place (at the voice coil) was
made of leather, and die cut in the shape of a spider’s legs. This part came to be known as a “spider”, and
the part is so named to this day, though the shape of the part has metamorphosed completely. Spiders are
generally made of cotton and steam-pressed. The spider can introduce noise into a loudspeaker system from
air moving through its holes.
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Fig. 16. Typical loudspeaker small signal behavior.

For the loudspeaker identi-cation problem it is well-known that a suitable neural net-
work, thanks to its universal approximation capabilities, can be used for identi-cation
of a dynamical nonlinear system [43,9]. So with NN approach we can characterize the
whole behavior of the direct-radiation in a loudspeaker independently from its nonlin-
earity sources. To completely characterize a nonlinear dynamic system by a functional
model we need a in-nite set of inputs. In our experiments we used some linear si-
nusoidal sweeps of diLerent amplitudes. In particular we used 3 linear sweeps from
10 to 500 Hz, sampled at 2 kHz, with diLerent amplitude. Several output loudspeaker
responses have been acquired in anechoic chamber.
Concerning the predistortion model, several researchers have demonstrated how neu-

ral networks can be trained to compensate for nonlinear signal distortion. In particular
in digital satellite communication systems predistortion technique inserts a nonlinear
module between the input signal and the nonlinear radio frequency high power ampli-
-ers [33,34,4,3]. Using a similar architecture of that one proposed for digital satellite
communications systems in [3], in our experiments the loudspeaker model is based
on an adaptive spline neural network (ASNN2 in Fig. 18) with 20 inputs (10 delays
of the inputs and 10 autoregressive of the desired output), 12 hidden spline neurons
(with 28 control points each), a single linear output; it has been trained using a simple
(normalized) backpropagation algorithm. The Fig. 19, presents a response of medium
amplitude sweep signal of the woofer SIPE-AS300 (up) and response of the neural
network loudspeaker model to the same excitation signal (down), after 2500 learning
epochs (each epoch consists in the presentation of the whole training set signals).
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Fig. 17. Frequency response and distortions of the woofer SIPE-ASW300 enclosed in a 25 l box. The
microphone is placed at the distance of 1 m from the loudspeaker in anechoic chamber.

Fig. 18 shows the overall loudspeaker-model and predistorter-model learning scheme.
Although the loudspeaker-model has been independently estimated (pre-training phase
in anechoic chamber), the scheme of Fig. 18 shows that in order to train the networks
ASNN1 the error (�2 in the -gure) is backpropagated through the ASNN2 (i.e. the
neural loudspeaker model).
It is important to underline that this scheme can be used to re-train the ASNNs in

the place where the loudspeaker is positioned, taking into account the deviations of the
loudspeaker characteristics due to age and other environmental factors.
Fig. 20 shows the harmonic distortion at 200Hz with and without predistorter.

3.4. Physical-like NN sound synthesizer

The sound synthesis by physical or physical-like model seems to be one of the best
way to produce interesting and high quality sounds. The physical model paradigms
are generally based on the subdivision of the synthesizer in a nonlinear excitation part
in connection with other linear parts as delay lines and/or -lters [53,49,5]. The most
famous model-based technique is the so-called digital waveguide -lter [53]. The basic
idea of this approach is to simulate the vibration-transmitting component of an acoustic
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Fig. 18. ASNN predistorter learning scheme. The ASNN2 learns the loudspeaker model that is used for error
back-propagation needed for the learning of ASNN1 network. Both ASNNs have 20 inputs (10 MA and 10
AR) 12 spline hidden neurons and a linear neuron output.

musical instrument such as the membrane of a drum, a string of a stringed instrument,
and a bore of a woodwind instrument. One of the main problems with model-based
synthesis techniques is the determination of the synthesizer parameters.
Usually, a spectrum analysis of the original signal is necessary in order to correctly

design the -lters, and many simpli-cations are made in order to describe the nonlinear
excitation mechanism (NLEM). The NLEM, in fact, is a very important characteristic
of the timber of the instrument.
In the last years, several attempts have been made for modeling the NLEM. As

an example, in [52], Smith proposed classical identi-cation techniques for the violin
model parameters estimation. More recently, Drioli and Rocchesso in [17], proposed
an interesting learning-based approach for pseudo-physical model for sound synthesis.
They proposed the use of Radial Basis Function universal approximation scheme in
order to oL-line learns the static or dynamic curve of NLEM.
In this section a new recurrent-network-based synthesis model for single reed NLEM

is proposed. Although the idea of using neural networks for sound synthesis is not new
(see, for example, [17] and the reference therein) our work addresses a new particularly
e,cient scheme.
In the proposed approach the structure of the network is designed on the basis of

a physical model of nonlinear excitation of the single-reed woodwind instrument. In
general the NLEM, as in the vibrating reed, is a nonlinear system with memory so,
static networks cannot adequately model this system. In order to take into account
this nonlinear dynamic, IIR/FIR-MLP (TDNN) [7] with 1exible activation function are
used [62]. Moreover, in order to obtain an e,cient hardware/software implementation,
the synaptic weights are constrained to be a power-of-two terms while the nonlinear
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Fig. 19. Response of sweep signal of the woofer SIPE-AS300 (up) and response of the neural network
loudspeaker model to the same signal (down).

function can be implemented as a simple spline interpolation scheme or through a
lookup table.
Due to power-of-two weights constraints and di,cult derivative computation (for

some particular synthesis scheme) standard or time-delay back-propagation learning
algorithm cannot be developed. Therefore the learning phase has been carried out by an
e,cient combinatorial optimization algorithm called Tabu Search (TS), -rstly proposed
by Glover and Laguna [23] and recently used for power-of-two adaptive -lter [56].
Moreover, in order to demonstrate the eLectiveness of the proposed model, experiments
on a single-reed woodwind instruments have been carried out.
The single-reed and mouthpiece arrangements act as a pressure-controlled valve,

which transmits energy into the instrument for the initialization and maintenance of
oscillations in the acoustic resonator. In woodwind instruments the reed generator is
generally driven into a highly nonlinear part of its characteristic and the reed can
be modeled as a damped nonlinear oscillator so that the motion of a second-order
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Fig. 21. General scheme of physical model synthesizer.

mass-spring system is given by:

mr

[
d2x
dt2

+ ,!r
dx
dt

+ !2
r (x − x0)

]
= g(p-(t); U (t)); (30)

where mr is the equivalent reed mass, , is the damping factor, !r is fundamental reed
frequency, p-(t) is the diLerence between the player’s oral cavity and the pressure
in the reed channel p- = (poc − pr) and U (t) is the steady volume 1ow through the
reed and g(:) is an hard nonlinear function [49,20]. The reed-excitation mechanism
[20] is a nonlinear system with memory and its parameters estimation can be very
di,cult.
A general model for a woodwind instrument is reported in Fig. 21. It is composed of

a delay line, a linear element (-lter) and a NLEM. In our approach, in order to de-ne a
more general nonlinear model, we make use of neural networks with FIR-IIR synapses
and activation functions implemented through an adaptive CR-spline interpolated curve.
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Fig. 23. Learning scheme of the neural physical model synthesizer.

Hence the parameters we optimize are the -lter’s weights and the control points of the
CR-spline activation curve.
FAF greatly reduces the structural complexity to approximate the NLEM. So the syn-

thesis network (here called Adaptive Spline Recurrent Network (ASRN)) constructed
on the basis of the previously described physical model of a single reed instrument
is shown in Fig. 22. Once the parameters are -xed with the learning algorithm (see
Fig. 23), the instrument works as a typical physical model instrument.
In order to obtain a computationally e,cient synthesizer, the ASRN makes use

of IIR-FIR synapse with power-of-two (or a sum of power-of-two) coe,cients. This
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represents a great advantage in the case of hardware realization. Multipliers in fact can
be built by using few simple and fast shift registers instead of slower 1oating-point
arithmetic, such a strategy can reduce both the VLSI silicon area and the computational
time. Moreover, as speci-ed in [26], the activation function can be easily and e,ciently
implemented both in hardware and in software or after the learning, simply realized
through a lookup-table.
We have tested this model with clarinet and saxophone sounds. The learning phase

consisted of 1000 TS cycles for the clarinet, having taken into account a cost function
over a window of 1024 samples. This cost function depends on a weighted diLerence
between the real instrument sound and the generated one. In particular, the cost function
Jcost minimized by the previous described learning algorithm is de-ned as

Jcos t = w[t]J1 + (1− w[t])J2; (31)

where J1 and J2 are de-ned as

J1 =
1
N

N∑
t=0

(d[t]− x[t])2 (32)

J2 =
∑
!∈9

(|D(ej!)| − |X (ej!)|)2; (33)

where d[t], x[t] and D(ej!), X (ej!); represent the desired and actual sound signals in
time and frequency domain, respectively. The term w[t] represents a weighting function
designed in order to take into account the initial instrument transient: w[t] can assume
an hyperbolic shape (e.g. w[t]=c0=(t+c1) where c0 and c1 are suitable constant terms).
The time-domain approach has, in fact, the advantage that it is able to treat quite simply
the starting transients of the sound. This is important, since transients make a very large
contribution to the individuality of musical sounds. The frequency-domain approach,
in contrast, works best for steady sounds (e.g. see [20]).
We have tested the model with several FIR-IIR delay line lengths. We obtained good

results for clarinet and acceptable results for saxophone-like sound. Currently we are
testing new solutions to improve saxophone model, such as to use adaptive all-pass
-lters as termination of the delay-line.
Our goal is not to exactly reproduce the target sound, that is impossible without

excessively complicating the model, but to make the instruments to learn the parame-
ters, so that they can reproduce diLerent types of sound. In this case the same model
can be used to reproduce a class of diLerent instrument characteristics. In fact, once
-xed all the parameters for a single instrument by minimizing the cost function (learn-
ing stage) the instrument can be played (forward stage) as a normal physical-model
instrument.

4. Conclusions

A review of some neural architectures for real-time DSP and some audio applications
have been described and discussed. Nonlinear signal processing represents in fact a
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central issue for a lot of applications of intelligent signal processing (that is a key tools
for many emerging multimedia technologies).
In particular 1exible activation functions, IIR-MLP, multirate NNs have been studied

in order to reduce the structural-computational complexity and make possible real-time
low cost NN audio applications.
The described experiments demonstrate that NNs can be considered as a well estab-

lished methodology for audio or more general nonlinear signal processing applications.
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