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Abstract. In this paper we investigate on the use locally recurrent neu-
ral networks (LRNN), trained by a discriminative learning approach,
for automatic polyphonic piano music transcription. Due to polyphonic
characteristic of the input signal standard discriminative learning (DL)
is not adequate and a suitable modification, called multi-classification
discriminative learning (MCDL), is introduced. The automatic music
transcription architecture presented in the paper is composed by a pre-
processing unit which performs a constant Q Fourier transform such that
the signal is represented in both time and frequency domain, followed by
a peak-peaking and decision blocks: the last built with a LRNN. In or-
der to demonstrate the effectiveness of the proposed MCDL for LRNN
several experiments have been carried out.

1 Introduction

Music Transcription is formally defined as the process of finding the score of a
musical piece, that is, finding a parametric representation of an acoustic wave-
form (notes, intensity, starting times, durations, instruments and other sound
features).

The 1st attempt in Automatic Music Transcription (AMT) has been made by
Moorer [1] in 1975. He was able to identify some of the problems that persist to
this day as monophonic-polyphonic classification, onset-offset detection, octave
errors, ghost notes, repeated notes, notes’ length and reverberation. Several tran-
scription systems have been developed after Moorer’s one: although different, all
of them follow a three steps procedure.

The 1st phase is known as signal’s pre-processing, and its aim is to obtain
a time-frequency representation of the musical signal. The simplest one is the
spectrogram, but it fails because of its incoherence with the logarithmic human’s
way of hearing sounds. In 1988, [2] proposed the Constant Q Transform (CQT).
It emulates human ears, modelling the critical band scale and avoiding the fixed
bandwidth (a Fourier Transform’s feature): the constant factor Q, represents the
ratio of frequency resolution. In 1996, Guillermain and Kronland-Martinet [3]
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Fig. 1. General scheme of automatic music transcription system. The vector x represent
the input time windowed signal; y is the array of its time-frequency representation; z
is the array containing the principal spectral peaks

proposed the Wavelet Transform (WT) (also known as scalogram). It decomposes
the signal in terms of shifts and dilations of an elementary function known as
the mother wavelet. The result is then interpreted in the time-scale domain.

The 2nd step is known as tracking phase and its aim is to track partials
(locating sinusoids in the note). It is possible to find different approaches: Kla-
puri’s [4] sinusoid tracks, Sterian and Wakefield’s [5] Kalman filter algorithm or
blackboard architectures [6]. The interpretation of tracking results is know as
recognition phase.

In this work, we decide to pay attention on Automatic Transcription of Poly-
phonic Piano Music. We exploited most related works [7] [8], in particular, Matija
Marolt’s SONIC [8]. We introduced a novel neural network model made up of
Locally Recurrent Neural Network (LRNN) trained by a discriminative learning
algorithm opportunely modified for the task of multi classification of polyphonic
music recognition.

This paper is organized as follows: in section 2 we illustrate the neural net-
work model made up of LRNNs for AMT; in section 3 we consider the discrim-
inative learning approach and its modified version, the MCDL; in section 4 we
combine the LRNNs model with the MCDL technique. We finally related about
experiments results.

2 A Neural Networks approach for AMT

The AMT should be considered a typical problem of dynamic pattern associa-
tion, since we have to associate sounds to notes.

The increasing popularity of neural network models to solve pattern recogni-
tion problems has been primarily due to their low dependence on domain-specific
knowledge the availability of efficient learning algorithms for practitioners to use:
they provide a new suite of non-linear algorithms for feature extraction (using
hidden layers) and classification. In addition, existing feature extraction and
classification algorithms can also be mapped on neural network architectures for
efficient (hardware) implementation.

Referring to Figure 1, for the feature extractions we used constant Q trans-
form CQT [2] as signal’s pre-processing phase. More details on its fast imple-
mentation are in [14].



In [8] Marolt tested several neural networks models (MLP, RBF, time-delay,
Elmann, Fuzzy ARTMAP) and the one that best fitted with the SONIC architec-
ture was the TDNN. Our motivation for RNNs relies on the fact that dynamic
recurrent neural networks have proved to be really useful in many temporal
processing applications as DSP and temporal pattern recognition. In particular,
we’ll make use of Locally Recurrent neural Network (LRNNs): in [9] it is possible
to find the major advantages of LRNNs with respect to other models of RNNs
as buffered MLP or fully RNNs.

We used Causal Recursive BackPropagation (CRBP) [9] as gradient-based
learning: it is an on-line algorithm that implements and combines together the
BackPropagation Through Time (BPTT) and the Real-time Recurrent Learning
(RTRL); it can be efficiently implemented (respect to truncated BPTT) and has
the advantage of being local in space and time (respect to RTRL that is not
local in space).

In order to obtain improvements in terms of generalization capability and of
learning speed we’ll make use of the flexible spline activation function [10].

When working with IIR synapses it is important to assure stability: it is
known that a static causal filter is asymptotically stable if and only if (iff) the
poles of its transfer function lie inside the unit circle of the complex plane. We
implemented the Intrinsically Stable Adaptation (ISA) [11] that makes possible
to continually adjust the coefficients with no need of stability test or poles pro-
jection: the coefficients are adapted in a way that intrinsically assures the poles
to be inside the unit circle.

The neural network model is depicted in Figure 2:
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Fig. 2. Neural Network model for Automatic Music Transcription

Each LRNN is trained to recognize a note among the N chosen; the input
pattern (the output of the signal’s pre-processing phase), is FW through each



net: if the out of the single net is above a threshold, this means that the note is
ON, OFF otherwise.

3 The Discriminative Learning for multi classification
problems

3.1 The Discriminative Learning

One drawback of traditional approaches to pattern classification is that the es-
timation error does not immediately translate into correct recognition: the stan-
dard MLP uses a minimum mean square error (MMSE) criterion that doesn’t
necessarily minimize the classification error rates. In [12], Juang and Katagiri in-
troduced a new formulation for the minimum error classification (MEC) problem
called discriminative learning.

Let’s consider a k-dimensional feature vector x; a linear discriminant function
could be defined as:
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dard MLP uses a minimum mean square error (MMSE) criterion that doesn’t
necessarily minimize the classification error rates. In [12], Juang and Katagiri in-
troduced a new formulation for the minimum error classification (MEC) problem
called discriminative learning.

Let’s consider a k-dimensional feature vector x; a linear discriminant function
could be defined as:

g(x) = wxT + w0 (1)

where w represent the weight vector and w0 the threshold.
If we have a pattern recognition problem with M classes, we’ll have M dis-

criminant function, and so a classifier parameter set Λ:

Λ = {λ1, λ2, . . . , λM} = {w1, w01,w2, w02, . . . ,wM, w0M} (2)

where λi = {wi, w0i}
Let the feature vector element x0 = 1, each discriminant function could be

written as:



g(x) = wxT + w0x0 = λixT (3)

This classifier uses the following decision rule:

C(x) ∈ Ci if gi(x, Λ) = max
j

gj(x, Λ) (4)

Thus, a feature vector x belongs to the class Ci that has the maximum value of
the discriminant function; having linear discriminant functions brings hyperplan
decision boundaries.

Despite the fact that learning with MMSE criterion does not necessarily lead
to MEC, due to the computational efficiency, the determination of the classifier
parameters set is usually formulated as a MMSE procedure using an objective
function weighted by a discriminate function.

In order to derive the new objective criterion, the traditional discriminant
formulation, have to be replaced with the following three-step procedure:

1. Determination of the form of the discriminant functions gi(x, Λ)
2. Determination of a quantity that indicates whether an input token x of the k-

th class is to be misclassified according to the design rule of [7], implemented
by the classifier parameter set Λ. This quantity is known as misclassification
measure and one reasonable possibility is:

dk(x) = −gk(x, Λ) +


 1

M − 1

∑

i,j 6=k

gj(x, Λ)η




1
η

(5)

3. Formulation of the minimum error objective. A general form of the cost
function can be defined as:

`k(dk(x) = dk(x, Λ) (6)

Note that the cost function `k and the misclassification measure dk can be
defined individually for each class k. Two of the several possibilities for the
cost function are the exponential or the translated sigmoid: both of them are
smoothed zero-one cost functions suitable for gradients algorithms. Clearly,
a correct classification have no costs, instead a misclassification leads to a
penalty that becomes a count of the classification error determined by the
loss defined above.

Finally, for any unknown x, it is possible to define an empirical average cost
as:

J(x, Λ) =
M∑

k=1

`k(x, Λ)a (7)

where a =
{

1 if x ∈ Ck

0 otherwise



This classifier performance function is the basis of the objective that we
shall optimize with descent methods as the MMSE: Λt+1 = Λt + ε∇J(Λt). The
Probabilistic Descent Theorem [13] assures the convergence of Λt to a locally
optimum solution Λ∗.

In [12] it is possible to find the complete MEC formulation for MLP. The
MLP structure for an M classes classification problem is depicted in Figure 3:
the network has M output neurons, each one of which models the discriminant
function of the DL formulation. Since an input x belongs to the class with the
highest discriminant function value among the M discriminant functions values,
we expect that the correspondent output neuron of the MLP has the highest
value among the M output neurons values.
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Fig. 3. MLP for M classes classification problem and neuron-j, level-l, n-input

4.2 Multi-Classification Discriminative Learning Algorithm

The DL model is attractive but it can’t be applied directly to our architecture,
in fact it is required that each input pattern belongs to a single class; instead,
our model can contain input patterns that belong to different classes, or in other
words, sounds made up of different notes (polyphony). We need to re-consider
the basic idea of discrimination: we need a procedure that takes into account
the fact that there’s the possibility of a not complete separation between classes
and that some input could lie in that common territory; we need to extend the
MEC for MLP to MCDL for LRNN.

Intuitively, we could apply a sort of superimposition of effects procedure in
which we consider a multiple classes input x ∈ Cp ⊆ ⋃M

k=1 Ck as belonging
separately to each one of the right p classes, and then combine the results. The
application of this procedure to the standard weight adjustment rule for neuron
in Figure 3:



∆wl
ji = −η

∂`

∂sl
j
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= δl
jx
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i (8)

leads to the following modification:

∆wl
ji =

∑

a∈{Cp}
∆wl

ji(a) = xl−1
i

∑

a∈{Cp}
δl
j(a) (9)

where ∆wl
ji(a) and δl

j(a) are respectively the weight adjustment rule and the
delta rule for an input x that belongs to the a-th right class among the p,
according to the superimposition of effects rule.
Let’s consider the delta rule for the last layer:

{
δj(a) = −η ∂`(a)

∂sj
= −η ∂`(a)

∂dj

∂dj

∂yj

∂yj

∂sj
= −η`′(∂da)∂dj

∂yj
∂yj

∂sl
j

= ϕ′(sj) = 1 because of the final linearity
(10)

da = −ya +


 1

M − p

∑

k 6∈{Cp}
yη

k


 (11)

∂da

∂yk
=

{−1 k ∈ {Cp}
yη−1

k

M−p

[
1

M−p

∑
k′ 6∈{Cp} yη

k′

]
k 6∈ {Cp}

Combining the results above:

∆wl
ji =

∑

a∈{Cp}
δj(a) =

{
−ηxl−1

i
∂da

yj
`′(da) j ∈ {Cp}

−ηxl−1
i

∂da

yj

∑
k∈{Cp} `′(da) j 6∈ {Cp}

where ∂da

yj
is replaced by its right expression. If an input x belongs to no classes,

no adjustment is made (∆wl
ji = 0).

We also have to redefine the classifier decision rule: an input x belongs to
a set of classes {Cp}, for each one of which, the discriminant function satisfies
a quantification belonging condition rule as for example a thresh function or a
domain integrity test.

5 The MCDL LRNN for ATM

The final model is depicted in Figure 4:
After a pre-training phase, in which each LRNN is trained singularly to rec-

ognize its target note, a discriminative over-training is made in order to assure
generalization and relationship between nets (that is: which is other nets’ be-
haviour when an input pattern is presented to the single net).
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Fig. 4. MCDL model for Automatic Music Transcription

There’s the necessity to introduce a polyphony net in order to establish how
many outputs to take, that is, how many notes are playing (are ON) at a par-
ticular instant: if the polyphony net outputs m, the highest m outs are taken.
We choose as polyphony net a LRNN that has to be trained independently from
other LRNNs, since it has a different task from the others.

6 Experimental Results

The experimental results reported here are of two kinds: the first is a compar-
ison between the model depicted in Figure 2 and a TDNNs model (similar to
SONIC), in order to demonstrate the advantages in using LRNNs and the draw-
backs of such approaches respect to discriminative ones; the second is mainly the
description of the growing learning process of the MCDL model and its strength
respect to the model in Figure.

All the networks used in these experiments had two layers, three hidden
neurons with hyperbolic activation spline function, one output linear neuron and
a variable number of input (generally 200) depending on the parameters chosen
for the CQT analysis (frequency range and the resolution). We used MA-AR:2-1
for the first layer in LRNN and MA:2 for the first layer in TDNN.

All the wave samples used for training/testing are random pieces (16 bit -
Mono - 11025Hz) generated using the Roland Virtual Sound Canvas VSC-88:
these pieces has a maximum polyphony level of 5 and a minimum note length of
50ms.

6.1 TDNN model vs. LRNN model

We used nearly 1000 wave samples in the range [C3; B5] as training and testing
sets. The LRNN model reveals its efficacy respect to the TDNN both on training



and testing sets, in particular, the LRNN model is able to identify correctly notes
that are misclassified by the TDNN with octave errors.

One drawback with this scheme is the redundancy of training, in fact each
network has to be trained independently with a specific training set. Moreover,
there’s the need to construct larger training sets in order to minimize the clas-
sification error on testing sets that are substantially different from the training
sets (that is: testing sets that contain different music styles respect to the cor-
responding training sets): however, very large training sets makes the learning a
real difficult task.

That’s why there’s the necessity to introduce a new model that is able to
overcome these difficulties.

6.2 MCDL for ATM

We used single note wave files (with different lengths) as training set for all of
the LRNNs in the scheme. After an individual pre-training phase in which every
LRNN learns its target note from its single note wave files, a discriminative over-
training is made (with the whole training set), in order to relate each LRNN to
the other.

The model is able to classify exactly single notes and monophonic sequences,
without the need to enlarge the training set. That’s an interesting result, and
reveals the strength of the DL respect to a standard LRNN model: it’s impossible
for a standard LRNN model to obtain this result, conditions being equal.

If we over-train again the monophonic-model obtained before, with growing
levels of polyphony wave files, using the MCDL algorithm, we are able to obtain
again correct classification, without wasting the preceding results.

Obviously, when working with high levels of polyphony, there’s the necessity
to reconsider the preceding over-trainings steps and vary the η parameter of
discrimination: generally, a short value for η is used when polyphony grows.

7 Conclusions

In this paper, we presented a new approach to Automatic Music Transcription
of Polyphonic Piano Music: the MCDL LRNN model. This model reveals its
efficacy in most of typical Music Transcription problems combining the advan-
tages of LRNNs (respect to other dynamic pattern recognition techniques) and
discriminative learning (respect to other classification techniques).

The multi-classification technique is the real novelty of this approach: its us-
age makes the learning simpler and faster, making useless the build of separated
training sets for each notes, giving coherence and generalization to the whole
model.

Because of the novelty of this approach, several tests there have to be made
besides Music Transcription context, in order to understand the exact of effi-
cacy of this technique. Extension of this system to higher levels of polyphony,



shorter note’s length and different pre-processing techniques have to be con-
sidered. Additionally, a post-processing block (a neural network or an hidden
Markov model) may be considered to correct errors.
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