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Abstract

Traditional approaches to channel equalization are based on the inversion of the global (linear or nonlinear) channel
response. However, in digital links the complete channel inversion is neither required nor desirable. Since transmitted
symbols belong to a discrete alphabet, symbol demodulation can be e0ectively recasted as a classi7cation problem in
the space of received symbols. In this paper a novel neural network for digital equalization is introduced and described.
The proposed approach is based on a decision-feedback architecture trained with a complex-valued discriminative
learning strategy for the minimization of the classi7cation error. Main features of the resulting neural equalizer are the
high rate of convergence with respect to classical neural equalizers and the low degree of complexity. Its e0ectiveness
has been demonstrated through computer simulations for several typical digital transmission channels. ? 2001 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Adaptive channel equalization is required to
combat intersymbol interference (ISI), nonlinear
channel distortion and interference in digital com-
munications [13]. Traditional equalizers attempt to
invert the channel response to recover the original
signal sequence before the 7nal decision [13]. In
alternative, in the last years neural networks have
been successfully applied to the equalization task
[1,2,11,12,14]. Acting as nonlinear maps between
received samples and training symbols [5], in fact,
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neural nets are able to enhance the received signal
before demodulation [6].
The classical approach to equalization is not

completely satisfactory in the presence of multi-
path and=or nonlinearities. As a matter of fact, in
these cases the channel inversion is an ill-posed
problem, due to a loss of information in the trans-
mission path [1,2,11,12,15]. Bayesian (BA) and
maximum likelihood (ML) equalizers are com-
monly adopted to face this problem [11] and are
based on the knowledge of the multidimensional
mapping performed by the channel from trans-
mitted symbol sequences onto symbol clusters,
de7ned in a proper output space [2,11]. With ML
and BA equalizers, channel inversion is neither
required nor desirable. In fact, they can be viewed
as classi7ers, whose objective is to determine the
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Nomenclature

S[n] transmitted symbol at time n
hk kth sample of channel impulse

response
H (z) channel transfer function
N length of channel impulse response
r[n] channel linear output at time n
r̂[n] channel nonlinear output at time n
x[n] received sample at time n
q[n] additive noise sample at time n

S̃[n] estimated symbol at time n
m length of equalizer feedforward section
l length of equalizer feedback section
d decision delay
y[n] neural network output at time n
w neural net weight vector
D{·} decision criterion
Di(·) ith discriminant function
Ri(·) ith mis-classi7cation measure

optimal decision boundaries among projected sym-
bol sequences. However, these architectures are
very expensive in terms of hardware requirements
when compared to traditional equalizers, so the re-
search for better cost=performance trade-o0s is fully
justi7ed.
Also radial basis function (RBF) networks have

been exploited in equalizer design, due to their link
with Bayesian classi7ers in Gaussian environments
[2,8]. However, RBF networks are hampered by
low speed and limited robustness of the clustering
phase [12], which is a critical step of the adapta-
tion process. In fact, if estimated centroids are far
from the true positions, local convergence of the
algorithm can dramatically slow down or fail.
Alternatively, multilayer feedforward [1,5,9,14]

or recurrent [10,12] neural networks can be used
as classi7ers, using the mean square error (MSE)
criterion. However, MSE minimization does not
imply a reduced bit error rate (BER) [9] and al-
ternative error functionals may be devised. In par-
ticular, the discriminative learning (DL) technique,
which optimizes the decision boundaries with a
non-parametric approach, has been proved to be
highly e0ective [9].
In this paper, a new neural architecture for digital

equalization is introduced and described. The pro-
posed solution is intermediate between the channel
inversion and the output symbol classi7cation ap-
proaches. A feedforward neural network with de-
cision feedback (DF) [1,11] processes the received
sequence. Final decision about received symbols

is made by a Bayesian-like criterion in the out-
put space. In particular, <xed Gaussian kernels are
used to model the output, so that multidimensional
clustering is not required. This is in contrast with
the classical RBF approach, which partitions the
input space. The training algorithm is based on a
complex-valued DL strategy which optimizes deci-
sion boundaries among output clusters.

2. Proposed architecture

In digital communication systems the transmitter
sends out a sequence of symbols S[n], which are
extracted from a given alphabet and assumed inde-
pendent and equiprobable. Fig. 1 shows the general
model of a digital communication system, which
introduces both linear and nonlinear distortions.
Linear distortions are due to the limited band-
width of the channel and generate ISI. Nonlinear
distortions are produced by nonlinear devices in
the transmission path (for example, converters or
ampli7ers working in saturation).
The linear part of the channel is commonly mod-

eled by a 7nite impulse response 7lter [13]:

r̂[n]=
N−1∑
k=0

hkS[n− k]; (1)

where N is the length of the channel impulse re-
sponse. In the presence of nonlinear distortion,
assuming that most channel nonlinearities are
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Fig. 1. Discrete time model of a communication system.

Fig. 2. Schematic of a decision feedback equalizer.

memoryless, a more general model for the channel
is [7,15]:

r[n] =f(r̂[n])

=f(S[n]; : : : ; S[n− N + 1]; h0; : : : ; hN−1);
(2)

where f(·) is a nonlinear function. The signal ob-
served at the receiver end is

x[n]= r[n] + q[n]; (3)

where q[n] is the additive noise, usually modeled
as a Gaussian white process with zero mean and
variance �20.
The proposed equalizer is based on the DF mul-

tilayer architecture depicted in Fig. 2. During the
learning phase, the feedback links are fed by an
internal replica of the transmitted (preamble) se-
quence. Then the switch commutes from position 1
to position 2 and the equalizer enters into the deci-
sion directed mode (DDE) [13] to produce an esti-
mate of S[n]. DF links increase the dimension of the
input space of the network, thus making the clas-
si7cation task easier [11]. The nonlinear adaptive

7lter (formed by a feedforward section of order m
and a feedback stage of order l) helps in contrast-
ing nonlinear distortions. The whole 7ltering pro-
cess introduces a decision delay d [13].
Given the channel model and the feedforward

order m, transmitted symbols that contribute to the
equalizer decision at time n are collected in the
vector:

S[n]= {S[n]; S[n− 1]; : : : ; S[n−m− N + 2]}:
(4)

The following vectors

x[n]= {x[n]; x[n− 1]; : : : ; x[n−m+ 1]}; (5)

u[n]= {u[n]; u[n− 1]; : : : ; u[n− l+ 1]} (6)

constitute the inputs of the feedforward and the
feedback stages, respectively. Since the oldest feed-
back symbol is u[n− l+1] and the oldest received
symbol in (4) is S[n − m − N + 2], the feedback
order l must be

l¿N +m− d− 2: (7)
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Fig. 3. Architecture of the proposed discriminative equalizer.

The proposed architecture is detailed in Fig. 3 and
is composed of two parts: a feedforward multilayer
neural network and a discriminative decision block.
The neural network computes an injective mapping
g(·) from the complex (m × l)-dimensional input
space onto the complex output space Y , in depen-
dence of some weight vector w, to be determined
during the supervised training phase. The input–
output relationship is

y[n]= g(x[n]; u[n];w)∈Y: (8)

The decision block produces the estimated symbol
sequence:

S̃[n− d]=D{g(x[n]; u[n];w)}; (9)

where D{·} represents the decision criterion, to be
properly chosen.

3. Discriminative learning

In digital communication systems, trans-
mitted symbols belong to a discrete alphabet
{si; i=1; 2; : : : ; L} and can be recovered by a clas-
si7cation approach [9]. Optimal decision contours
separate regions in the output space, mapped by
the channel response and the equalizer function.
The proposed equalization approach searches for

a trade-o0 between the classical adaptive channel
equalizer and a symbol classi7er. The output distri-
bution is modeled by a mixture of Gaussian circular
kernels, one for each symbol or class. The follow-
ing membership function (or prototype) is de7ned

for the ith class [2,8]:

Di(y)= exp
(
− |y − si|22

2�2i

)
; (10)

where �i is the corresponding dispersion pa-
rameter. In the proposed approach, prototype
dispersions are 7xed, while they depend on the
noise power in the BA equalizer [2]. Training
forces the neural network to produce compact clus-
ters in the output space, within the support region
of each Gaussian prototype.
In classi7cation theory, membership functions

are usually referred to as discriminant functions.
Each discriminant function is a generalization of the
assumed a posteriori pdf associated with the cor-
responding symbol. Similar to the Bayes decision
rule [11], the decision operator D(·) is de7ned as

D(y)= si if Di(y)=max
k
Dk(y): (11)

This operator involves the calculation of L dis-
criminant functions at each time step and selects the
symbol corresponding to the dominant membership
function.
The choice of prototypes strongly a0ects the

performance of the learning algorithm. Di0erently
from least-squares criterions, where the objective
is the coincidence between the network outputs
and the target symbols si, the proposed method at-
tempts to reduce the classi7cation error probability
without reaching a minimum MSE.
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Traditional MSE criterion minimizes the follow-
ing error functional:

JMSE(w)=
1
2K

K∑
n=1

|y(w)− si[n]|22 ; (12)

where si[n] is the correct symbol at time n and
optimization is performed over K¿ 1 consecutive
time steps. With respect to the MSE criterion, DL
reformulates the error functional to take explicitly
into account the objective of minimal decision er-
ror probability. This requires the introduction of an
adequate weighting of the distance between actual
outputs and target symbols. Discriminant functions
previously de7ned are incorporated into an objec-
tive scalar criterion, suited to optimization proce-
dures. Such a criterion can be derived by de7ning a
proper mis-classi<cation measure, which must be
a continuous and di0erentiable function of the net-
work parameter vector w. 1 Adopting Katagiri and
Juang solution [9], the mis-classi7cation measure
for the generic ith class is de7ned as

Ri(y) =
�

√√√√√√
1

L− 1

L∑
j=1
j �=i

Dj(y)� −Di(y)

= [ i(y)]
1=� −Di(y); (13)

where

 i(y)=
1

L− 1

L∑
j=1
j �=i

Dj(y)� (14)

with � being a positive number and Di(y) is given
by (10). Formula (13) assumes positive values in
correspondence of each wrong decision, and neg-
ative values in the opposite case. When Ri(y) is
lower than some speci7ed negative threshold !
(meaning a correct classi7cation), the global cost
function should remain at a constant (small) value.
Finally, the complete DL functional is

JDL(y)=

{
exp("Ri(y)) if Ri(y)¿− |!|;
exp(−"|!|) otherwise:

(15)

1 The dependence on w will be omitted in subsequent for-
mulae whenever ambiguities cannot arise.

The threshold !, not present in the original for-
mulation [9], forces network outputs into a compact
region between decision boundaries and prototype
centers. Values for " are typically chosen in the
range [1,4].

4. Learning algorithm

The weight vector can be iteratively adapted by
the general descent formula

w[n+ 1]=w[n] + Nw[n]: (16)

The gradient search procedure adopted in this
work gives

Nw=−$∇w JDL(y(w))

=−$∇y JDL(y)
@y(w)
@w

; (17)

where $ is the learning rate and the step index n
has been omitted for simplicity.
The term @y(w)=@w is evaluated by use of

the well-known backpropagation algorithm (or
least-mean squares, LMS) for complex-valued
neural networks [14,15], while the term ∇yJDL(y)
is evaluated as

∇y JDL(y)=

{
"JDL(y)∇yRi(y) if Ri ¿− |!|;
0 otherwise;

(18)

∇yRi(y)= [ i(y)]
1=�−1∇y i(y)

�
−∇yDi(y);

(19)

∇y i(y)
�

=
1

L− 1

L∑
j=1
j �=i

Dj(y)�−1∇yDj(y); (20)

∇yDi(y)=−Di(y) [y − si]
�2i

: (21)

Eqs. (18)–(21) must be substituted into (17) to get
the 7nal weight update formula.
Optimization of the error functional is carried out

in complex arithmetic, by the procedure described
in [1,15].
The DL algorithm has only a small computa-

tional overhead with respect to a standard neural
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Table 1
DL computational overhead with respect to the LMS algorithm

Additions Multiplications Nonlinear functions

LMS 2 (1 complex valued) 0 0

DL overhead
Dj(y) j=1; 2; : : : ; L 3L 3L L (exp)
 i(y) L− 2 1 L− 1 (power of �)
Ri(y) 1 0 1 (power of 1=�)
JDL(y) 0 1 1 (exp)
∇y JDL(y) 3L− 1 3L+ 4 1 (power of (1=�− 1))

Total 7L− 2 6L+ 6 2L+ 2

Fig. 4. Channel H1(z)= 0:3482 + 0:8704z−1 + 0:3482z−2: average symbol error rate vs. SNR for (a) 2-PAM and (b) 4-QAM
modulations.

equalizer based on the MSE criterion, due to the
term ∇y JDL(y) in (17). Table 1 shows in detail this
computational overhead. IfW is the total number of
complex weights in the network and L is the number
of symbols, the main cost is given by 4W + 6L
multiplications for each time step, if a LMS-like
algorithm is adopted. In many practical problems
W 	L and this overhead can be neglected. It is
important to remark that since � is 7xed, nonlinear
functions can be conveniently computed through
look-up tables.

5. Experimental results

In simulations a two-layer neural network was
used. The activation function F(x) was chosen
as [3]

F(x)= x + a sin(*bx)

with a=0:03 and b=10 for the hidden neurons,
and a=0:05 and b=4 for the output units. In all
experiments, weights were initialized with random
complex values extracted from a normal distribu-
tion with zero mean and variance �2 = 0:1.

The feedforward 7lter had length m=3 while the
backward 7lter order l was calculated according to
(7). The decision delay was d=3 in all cases.
Training was performed with 2000 output sym-

bols, while performance was evaluated on 105 more
received symbols and averaged over 10 di0erent
network realizations.
Performance of the DL equalizer (DLE) was

tested for di0erent channel models [4,9,10]. Re-
sults obtained by an equalizer having the same DF
architecture, but trained with the traditional MSE
criterion, were also considered for comparison.
The values of �, " and ! were empirically opti-

mized. Dispersion parameters �i’s of discriminant



M. Solazzi et al. / Signal Processing 81 (2001) 2493–2502 2499

functions depend on the constellation and were cho-
sen as the half of the (minimum) distance of each
symbol from the nearest ones: for instance, �i=1
for 2-PAM signaling and �i=1=

√
2 for 4-QAM.

The signal-to-noise ratio (SNR) was de7ned as

SNR=
E[|r[n]|2]

�20
; (22)

where E[ · ] is the expectation operator.
In the following, results obtained on some typical

channel models are described, both in terms of clas-
si7cation performance and convergence properties.

Fig. 5. Channel H2(z)= (0:4313+ 0:4311j)(1− (0:5+ j)z−1)
(1− (0:35+0:7j)z−1): average symbol error rate vs. SNR for
2-PAM modulation.

Fig. 6. Nonlinear channel with H1(z)= 0:3482 + 0:8704z−1 + 0:3482z−2: average symbol error rate vs. SNR for (a) 2-PAM and
(b) 4-QAM modulations.

5.1. Classi<cation performance

Test 1. The 7rst example is a typical linear
non-minimum-phase channel with transfer func-
tion:

H1(z)=0:3482 + 0:8704z−1 + 0:3482z−2:

Fig. 4 shows the results for 2-PAM and 4-QAM
transmission, in terms of symbol error rate vs. the
SNR.

Test 2. As a second test a complex-valued linear
non-minimum-phase channel was considered, with
transfer function:

H2(z) = (0:4313 + 0:4311j)[1− (0:5 + j)z−1]

×[1− (0:35 + 0:7j)z−1]:

The curves depicted in Fig. 5 were obtained.

Test 3. This experiment considered a nonlinear
channel. According to channel model (3), a non-
linearity was applied to the output r̂[n] of a linear
7lter, whose transfer function was H1(z); and the
received sequence x[n] was then generated by the
following equation:

x[n]= r̂[n] + 0:2(r̂[n])2:
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Both experiments, conducted with 2-PAM (Fig.
6a) and 4-QAM (Fig. 6b) modulations, con7rmed
the better performance with respect to the MSE cri-
terion, also in the nonlinear case.

Test 4. The last channel was also a nonlinear chan-
nel with the linear part given by

H3(z) =−0:2052− 0:5131z−1 − 0:7183z−2

+ 0:3695z−3 + 0:2052z−4;

while the output was generated as in the previ-
ous experiment. Experimental results are shown in
Fig. 7.

Fig. 7. Nonlinear channel with H3(z)=− 0:2052− 0:5131z−1

−0:7183z−2 + 0:3695z−3 + 0:2052z−4: average symbol error
rate vs. SNR for 2-PAM modulation.

Fig. 8. Symbol error rate vs. number of training samples for DL and MSE equalizers.

5.2. Convergence properties

Several experiments were performed to evaluate
the convergence speed of the algorithm. In fact, a
very important feature in equalization is the ability
of the equalizer to promptly adapt to channel vari-
ations. The convergence rates of the DL and the
traditional MSE approaches were compared, using
the same networks of previous tests. The proposed
algorithm was found to be about 4 times faster, for
the same performance in terms of average symbol
error rate. Fig. 8 shows four training curves refer-
ring to the nonlinear channel model considered in
test 2, with SNR=18 dB and 2-PAM modulation.
The DL curves were obtained for di0erent values
of the parameter !. For small values of !, the net-
work output is close to the decision boundaries. In
contrast, for large ! the output is forced around pro-
totype centers; in this case, the DL algorithm be-
haves similar to the MSE approach. The best perfor-
mance has been obtained with intermediate settings
of !.
Finally, the evidence that MSE minimization

does not necessarily imply a minimum symbol
error rate was found throughout all simulations.
Fig. 9 shows some MSE curves obtained in a typ-
ical test. It is clear that DL does not minimize
the MSE but scores a better classi7cation perfor-
mance. Fig. 10 con7rms that optimal classi7cation
is obtained even if outputs do not converge to the
transmitted symbol constellation.
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Fig. 9. MSE vs. number of training samples for the channel of test 3 (2-PAM signaling and SNR=18 dB).

Fig. 10. Output clusters for the MSE (left) and DL (right) equalizers.

6. Conclusion

Traditional approaches to adaptive digital
channel equalization employ the MSE criterion.
Anyway, MSE minimization does not lead to mini-
mum symbol error rate, which is of interest in dig-
ital equalization problems. Moreover, MSE-based
equalizers generally exhibit a low speed of conver-
gence. In this paper, a new equalizer based on the
DL criterion has been introduced. The proposed
architecture guarantees a better classi7cation per-
formance without imposing convergence of outputs

toward constellation symbols. Experimental tests,
performed with di0erent channel models and mod-
ulation schemes, con7rmed the validity of the new
equalizer, in terms of both symbol error rate and
speed of convergence.
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