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Abstract

In this paper a new architecture for multichannel blind
deconvolution in the frequency domain is presented. It is
based on a new complex-domain non-linear function, built
with a couple of spline functions, one for the real and one
for the imaginary part, whose control points are adaptively
changed using gradient-based techniques. B-spline
functions are used since they allow to impose only simple
constraints on the control parameters in order to ensure
the needed monotonously increasing characteristic.
In the paper the adaptation rules for both the un-mixing
matrix and the spline control points are also derived. Some
experimental results that demonstrate the effectiveness of
the proposed method are presented.

1. Introduction

Multichannel blind deconvolution (MBD) techniques allow
to rebuild source signals from convolutive mixtures, using
only observations of the mixtures and some knowledge on
the spatial and temporal statistical characteristics of the
source signals. The MBD generalizes the well known
instantaneous blind signal separation problem, which a
large number of papers has been devoted on.
In one of the first papers, Bell and Sejnowski [1], proposed
an adaptation (or learning in neural network context) rule
based on the maximization of the output entropy. In this
case, if the pdf’s of the sources are known, the fixed non-
linearity’s should be taken equal to the cumulative density
functions of the sources. It is known that in both the
instantaneous and convolutive cases, the choice of the
correct non-linear functions can play an important role.
Therefore several approaches have been proposed to obtain
adaptive non-linearity’s which allow to optimize the shape
of the functions with respect to the input signals.

Among the different approaches, the case of spline-based
non-linear functions [2] seems to be particularly appealing.
It is based on the idea of deriving adjustable non-linear
functions by using a spline approximation whose control
points are adaptively changed. This idea was firstly
proposed in the supervised context for multilayered
networks [3] and then proposed in an information
maximization scheme [2]. Recently, the extension to the
complex-valued case has been presented [4].
Based on the results in [2] and [4], in this paper a new
adaptive non-linear function for blind complex domain
signal processing is presented and applied to the problem
of MBD. The proposed approach follows the ideas
presented in [5,6], where the authors demonstrate that the
MBD can be seen as a multiple instantaneous complex-
valued separation problem, by using a N-th order Short
Time Fourier Transform (STFT). The new technique is
based on a couple of spline functions, one for the real and
one for the imaginary part of the input, whose control
points are adaptively changed using gradient-based
techniques. It uses B-spline functions that allow to impose
only simple constraints on the control parameters in order
to ensure the needed monotonously increasing
characteristic.

2. Blind separation in frequency domain

A convolutive mixture, can be written as:
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where ( )js t  are the source signals, ( )ix t  are the mixtures

and ( )ija k  are the mixing filter coefficients (FIR). In the

simple case of two signals we can write
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In [6] the author demonstrates that the separation of a
mixture of convolved signals can be obtained by separating
N instantaneous complex sources in the frequency domain
by using a N-th order Short Time Fourier Transform
(STFT). The separating matrix Wf(t) for each frequency bin
is such that:

( , ) ( ) ( , )          ,fY t f W t X t f f t= ∀ (3)

To separate complex input signals from instantaneous
mixtures, here we follow an information theoretic
approach. The entropy of the outputs yi(t) is maximized
with respect to the parameters of the un-mixing complex
matrix W and the control points  Q of the adaptive non
linear functions
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where py (y) is the complex domain pdf of the outputs y
and J represents the Jacobian.
Following [6] a non-linear function for each frequency bin
should be implemented. In order to reduce the
computational cost, we exploit an approximate scheme,
using only a global adaptive function for all the
frequencies. The overall system is reported in Figure 1,
where the presence of a single non-linear function is
clearly shown.

3. Complex spline non-linear function

For a better understanding, let’s briefly introduce the real-
valued case. The real spline activation functions (see [3])
are smooth parametric curves, divided in multiple tracts
(spans) each controlled by four control points. Let f(x) be
the non-linear function to reproduce, then the spline
activation function can be expressed as:
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where x∆  is the fixed distance between two adjacent
control points; the constraints imposed by equation (7) are
necessary to keep the input within the active region that
encloses the control points. Separating z  into the integer

and fractional parts using the floor operator .   , finally we

get
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In matrix form the output for the k-th spline span, can be
expressed as
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where:
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with 0 1u≤ <  and M is the coefficient matrix of the B-
spline version of [3], as in [2].
In the complex domain, we use two distinct real-valued
spline functions [4], one for the real part and one for the
imaginary part. Therefore equation (9) can be redefined as:
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where iy  is the complex output of the function and j

denotes the imaginary unit. In order to ensure the
monotonously increasing characteristic, we must impose
the constraint: 1 2 ... NQ Q Q< < < , for both the real and

imaginary parts.

4. Adaptation rule

Following the information theoretic approach of eqns.(4), a
rule for the adaptation of both the un-mixing matrix and the
spline control points can be derived.
Defining the joint entropy for a complex variable H(y) as:

( )( ) ( , )ln ( , )y R I y R I R IH p p d d= −∫y y y y y y y  . (13)

we can derive the adaptation rule for the weights W in the
complex domain as [5]
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where the suffix H denotes the matrix Hermitian.
In order to derive the adaptation rule for the control points,
the cost function to be maximized can be redefined as:

( , , ) ( )R IF HW Q Q y@ . (15)

where the arrays QR and QI indicate respectively the real
and imaginary parts of all the B-spline control points,



Considering the activation function defined in eq. (12), the
j-th element of h(u), assumes the form:
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where for the sake of simplicity we assume ∆ujR equal to
∆ujI (as in practical cases).
In order to adapt the control points of the activation
functions, first it is possible to show that the maximization
of the functional (15) is equivalent to the maximization of
the following quantity:
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where W%  is a suitable matrix depending of the un-mixing
matrix W  which does no depend on the control points.
Then, starting from this, it is possible to demonstrate that
the adaptation rule for the control points of the real part
function can be expressed as:
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A similar expression can be derived for the control points
of the imaginary part function, so we can write the final
adaptation rule as:
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where the term η  represents the constant adaptation rate for
the B-splines control points. For the sake of brevity, the
two derivations are not reported here.

5. Experimental results

In order to test the performance of the proposed algorithm
several experiments has been carried out. Due to the space
limitation we report only one experiment relative to a
minimum phase convolutive mixing.
As stated before, in order to reduce the computational cost,
the proposed architecture uses an approximate scheme
using only one complex-valued adaptive function for all
the frequencies (Figure 1). In the experiment we report,

where we consider a 2-channel MBD problem, this allows
to adapt only 4 real spline functions (1 complex function
per channel, 2 real functions each).
The experiment consists of the blind deconvolution of two
signals obtained by mixing two speech signals with a
minimum phase 2x2 filter matrix. Both the classical
algorithm (without adaptive functions) and the proposed
adaptive scheme has been implemented and tested on the
signals. For the new architecture, the FFT output has been
scaled in order to fit the selected input range of the real
spline functions (-3, +3).
The estimated probability density functions of the input
signals (real and imaginary parts) are reported in the first
row of Figure 2. The second row of the same figure reports
instead the shapes of the corresponding adaptive functions
after adaptation, compared with the static tanh function.
The adaptive capability of the proposed method is well
evident.
This is confirmed also by the performance in frequency,
obtained activating only a channel at a time as in [6]. Fig. 3
reports such results for the spline-based algorithm (left
column) and for the case of static (non-adaptive) functions
(right column).
Figure 4, instead, reports the evolution of the Signal-to-
Noise (S/N) ratio during adaptation. The dark gray lines
represent the evolution of S/N (in the two channels) for the
adaptive spline case, while the light gray lines are relative
to the static case. Again the gain in performance of the
proposed method can be appreciated.
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Figure 1:  The proposed frequency domain architecture using one adaptive flexible B-spline activation function.

Figure 2:  Input signal pdf’s and the corresponding adapted spline functions.
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Figure 3: Performance in frequency domain: (left) using adaptive functions; (right) fixed tanh functions.

Figure 4:  SNR during the learning phase: (left)using adaptive functions; (right) fixed tanh  functions.
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