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Power-of-Two Adaptive Filters Using Tabu Search quantized filter coefficients domain made of a sum of SPT's. The pro-
_ o posed method avoids any coefficient rounding and is suitable for a
Stefano Traferro and Aurelio Uncini simple hardware implementation [1], [2], and [18].

The TS algorithm has been widely employed in typical operational

Abstract—Digital filters with power-of-two or a sum of power-of-two co- research prob!ems_ and for .s’.[atl.c d.lglt.al fllter. de5|gn_ [4]’.[5]’ [15]; h(_-:‘re,
efficients can be built using simple and fast shift registers instead of slower W& have exploited its capability in finding optimal points in a dynamical
floating-point multipliers, such a strategy can reduce both the VLSI sil- search space.
icon area and the computational time. Due to the quantization and the | the case of SPT static filter design, some researchers have tried to

nonuniform distribution of the coefficients through their domain, in the yse nonconventional optimization procedures, like the Genetic Algo-
case of adaptive filters, classical steepest descent based approaches canng

be successfully applied. Methods for adaptation processes, as in theast thm (GA) [9], [11] or Simulated Annealing (SA) [10]. However, due
mean squaregLMS) error and other related adaptation algorithms, can  t0 their slow convergence properties, algorithms like GA or SA cannot
actually lose their convergence properties. In this brief, we present a cus- be straightforwardly used for fast adaptive DSP applications.

tomized Tabu Search (TS) adaptive algorithm that works directly on the In Section I, we simply introduce the TS algorithm, derive some

power-of-two filter coefficients domain, avoiding any rounding process. In . - . L
particular, we propose TS for a time varying environment, suitable for real functional conditions, and work out simple modifications so that the

time adaptive signal processing. Several experimental results demonstrate €mployed method is able to track the solution in a time-varying cost-
the effectiveness of the proposed method. function environment. In Section Ill, we indicate a brief formulation of

Index Terms—Adaptive digital filter, finite precision design of adaptive the equalization problem and report some experimental results.

digital filter, finite wordlength, global optimization, signed digit code,
signed power-of-two, tabu search.

|. INTRODUCTION Il. TS OPTIMIZATION ALGORITHM

The use of adaptive systems, i.e., capable of altering their transfer o . ) ) . o
functions as the environment changes, appears in many applicationérs IS a heU”S_t'C technique for_solymg combmatonal optimization
such as the equalization of a communication channel or the autom&’ﬁeblems on a wide range of applications. It was introduced by Glover
control of a system. Many adaptation procedures are based on thelfkd8] in the late 1970's and is being adapted to certain engineering

of algorithms derived from the well-knoweast mean squargaMs) ~ Problems. ) _ o _ _
[16]. Unlike other combinatorial optimization algorithms, asin GA or SA,

The growing need for high-speed processing in communicatidynere each step is per_fo_rmed in_dependently from the previous moves,
hardware has attracted the attention of designers toward digilat K€€PS trace of the visited region in the search space in order to avoid
FIR filters with signed power-of-two (SPT), or combinations ofntrapmentin local minima and to prevent cycling. The search mech-
SPT, coefficients. These architectures make it possible to comp@fiSm can be viewed as a dynamic system which makes it possible to
multiplications quickly and efficiently, as well as reducing the area digduce the amount of inspected points and, consequently, the compu-
a silicon chip, thus achieving a higher degree of integration and a hiftional burden.
throughput signal rate.

In the case qf adaptiye-filter fast ha_rdware implem_entgtion, tr}g_ The Basic TS Algorithm
tuning optimization algorithms can require some modifications. The

solutions yielded by the LMS have to be rounded in some way. In [17], | et us define our notation to describe a basic version of the TS algo-
the authors proposed a hardware solution to perform the stochagtiem:

gradient algorithm. A power-of-two quantizer is used for the equalizey the discrete domain of the optimization problem; it is also

output error, and a hard limiter for the receiving data to reduce named feasible region;

the multiplication to a simple shift. Such an approach, here callgde x the variables array;

the log-log LMS algorithm, is presented in [12], where the authorgy.) the objective function. Its value, evaluated on a psirit

proposed only a fast adaptation algorithm, while the filtering section is indicated as = f(x) throughout the text;

unchanged and the filter coefficients are represented as floating-poigt. ¢ the point of the domain wherg(-) reaches its minimum,

On the contrary, to assure a high filter-throughput rate, we also neegra 2 = f(x*);

fast filtering section to avoid a cumbersome hardware multiplier. (. a function, usually callednove which generates a new
In this work, we propose a new adaptive method based on the Tabu point during the search phase. Itis defineg.a® — X,

Search (TS) optimization algorithm [6]-[8], that works directly on the i.e., u(x) € X.Each move is associated with a value

indicated asnove valuemv = f(p(x)) — f(x),and a
tabu statusvhich states whether it is forbidden;

CL(x) the Candidate List representing a set of different moves
applicable to the point, CL(x) = {p|pn(x) € X,Vu};

M int ved J 1999: revised Feb 2000, Thi K T is the Tabu Set that collects the forbidden moves. A move
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following pseudo-code illustrates a basic version of the TS, where nlr] Pl
denotes an assignment operation. &
g p sln] o LN He) yinl
e[n]
e +
1) Initialization phase: N d(n]
x—x9 € X,x" —x,2" « f(x*), T — 0 (empty set), z
k <« 0 (iteration counter)
2) Compute the Candidate List\L(x) = {u|u(x € X,Vu} Fig. 1. Channel equalization scheme.

3) If CL(x)— T = () then go to step 7)
4) Choose the best move (NL(x) — T,

5) Update the trial solutiog — s (x) ’
6) If f(x) < 2" thenx™ « x, 2" « f(x") L Comp @) s'Tn]
7) UpdateT

8) Increment the iteration countdr,
9) If & < Emax then go to step 2)
End: the solution ix* andz* = f(x").

0.2 %

Fig. 2. Nonlinear channel model used in the experiment.

As specified in the previous section, every mesex) is associated
o ) ~ toavaluemv, defined as the variation of the objective function value
Each step through the domain is performed using the minimufgge to the move operation. In a time varying environment, the param-
valued nontabu move chosen from the Candidate Ligt(steps 2-5). eter¢ induces a modification inside th-), thus for each move, we
The solutionx™ and the Tabu Sef are updated when every move hag,gye

been executed (steps 6 and 7). In pracflcis, implemented as length
first-in first-out queue: when a move enters ifitpduring thekth iter- muo(p) = f(u(x),t1) — f(x,to) (2)
ation, the one executed at iteratigh— 7) escapes. In other words,
encapsulates the short term memory on which the algorithm is bas‘élalere the subscript 0 indicates the instant when the solution has been
in order to carry out its search. updated the last time. This quantity can be divided into two parts
More sophisticated selection mechanisms can be introduced during
step 4._They_are_ calleakspiration intens_ificat_ion diversification and mu(p) = {f(u(x).t1) — Fx. )} + {f(xt1) — f(x.t0)}  (3)
strategic oscillationand are well described in [6]-[8].
The efficiency of the algorithm depends heavily on the type of en-
coding used for the domain variables and the constraints. In the bakftere the former states the variation of the objective function value

implementations of TS, the only quantity to tune is the tabu tenure due to the translation, while the latter is due to the time elapsed. The
change induced by a move can be kept under control by the heuristic,

B. TS for Time-Varying Problems whereas the last term can be seen as an external agent. If we generate

TS has only been applied in static optimization problems. On th%L in a sequential manner, we will evaluate each move at different

. : L - o times. Consequently, the comparison process in step 4 becomes mean-
contrary, in adaptive applications, the functional characteristics change q Y, P P P

. . . . . ifgless, as the selection is performed between different objective func-
as time elapses. Referring to a fixed-coefficients domain, we have : - ! . o : :
. ) tions. This effectis more evident if the objective function temporal vari-
solve the following formal problem:

ations are greater than the descending steps.

In order to avoid temporal incoherence, the algorithm remains sta-

min f(x,1), x€ X C RN (1) tionary during the execution of steps 2—-4.
The second issue to analyze is the role of the short-term memory,
accomplished through the Tabu S&tin a nonstationary environment.

wheref(-) is the objective functionX denotes the feasible region for|n the static case, it is useful to avoid trapping in local minima, though
the coefficients and explicitly indicates the temporal dependence. lyhen we deal with a dynamical objective function, this task can au-
is easy to perceive that the solutiot, is, in general, connected to thetomatically be done because of the time variation of the cost func-
temporal parameter x*(#), so that the training heuristic must be ablejon surface. The setting of the tabu tenure is less critical than in the
to track the variation of the functional as time elapses while remaini@%ady_state case, even though we must a|WayS considerits Constraining
in the search space. effect during the exploration of the search space.

In order to tailor TS to a temporal problem, we define a property The |ast aspect of the TS to study is the storage of the best objective
calledtemporal coherencéVhen we bring TS from a steady to a tem+ynction value ever found during the execution of the heuristic=
poral varying environment, we want the actions it performs to maintajn x*) (step 6). In the time-varying case, this reference totally loses its
their meaning to produce the same effects. We call such behtawer meaning. The cost function used to compute z* no longer exists (when
poral coherencelt is not trivially guaranteed in every condition andtime elapses, the temporal coefficients change their value, making the

sometimes requires high computational power. function different), thus the solution is not updated when TS finds a
We shall study this property by analyzing three aspects of the alggstter minimum, but only if the objective function value is lower than
rithm stated more extensively here: that in the point*. The use of the quantity* puts an uncontrollable
2) the selection of the best move frafl.(x) — T (step 4); element into the heuristic when the temporal variations are prominent.
3) the admissibility mechanism; Therefore, the adoption of this quantity, as in the stationary case, makes

4) the solution updating (step 6). the algorithm temporally incoherent.



568 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 6, JUNE 2000

SNR [dB] SNR [dB]
5 7 11 15 19 21 23 4 8 12 1B 20 2

log(BER)
log(BER)

—&— Proposed method - Q-NLMS | —o— Proposed method —i— QNLMS |

Fig. 3. Performance comparison. Chanéigl, (=) and filter-order 10. Fig. 6. Performance comparison. Chanfigl..,,( =) and filter-order 10.

as the relative difference betwegfx, ¢) and the minimum of the cost

SNR[dB] function within a given iemporal window, v:e<adopt the following rule:
5 7 M 15519 21 ; ) °<0
T(8) =< [(my — 1)8]+1, 0< 6 <1 4)
Mit, 6>1
where][-] denotes the integral part ang;; is set to ten. We also use a
—_ w\ simple aspiration criterion within the TS mini-cycle, and the tabu tenure
& 3 T is set as half the total number of repetitions in order to reduce loop
% ) \\s\@; length in the average.
L
5 \ Ill. EXPERIMENTAL RESULTS
® - In the case of adaptive SPT filters, classical algorithms, like LMS or

-7 its quantized version, denoted as Q-LMS, lose their convergence prop-

erties, as they deal with discrete domains [17]; thus, in order to verify
——— Proposed method —&i— QNLVS the effectiveness of the proposed method, we decided to apply the TS
heuristic to the problem of a linear equalization of a communication
Fig. 4. Performance comparison. Chan@gl, (=) and filter-order 7. channel us'lng the RLS criterion [131* [1_6]' . -

We considered the channel equalization scheme described in Fig. 1,
wheres[n] is the transmitting binary sequencg(z) states the equiv-
alent transfer function of the communication channel [23}] de-

SNR[dB] notes the noisy sequencgr] indicates the output of the linear adap-

4 8 12 1B 20 22 tive equalizer whose transfer functionfi§ =), d[n] is the target signal
obtained delaying the sequenge], ande[n] states the error which
drives the TS to tune the coefficients of the linear SPT FIR filter.

We chose the classical RLS objective function to minimize

i

k=n—R+1

-3 \'\\ e]= > A" TFelk]’, e[kl =dk]-x;-h  (5)

log(BER)

-4

5 \ where the inner produck? - h represents the output of the
\ equalizer with tapsh at instant k; the vectorsx, and h are

-6 S defined asx; = (z[kl.2[k — 1],---.2[k — N + 1)) and

-7 h = (hi[n], ha[n],---, ha[n])*, respectively, andV denotes the

order of the filter. The weighting coefficient (called forgetting

—+— Proposed method —#— QNLMS factor) has been set to R indicates the temporal window length and

has been set to 75 samples.

Simulations employed two linear channels are

Crp(2) =1—0.82"1 4+ 0.5272 6a
b

( - -1 -2
A simple way to avoid the latter drawbacks consists in executing Crmp(2) =0.3482 + 0.87042" + 0.34822 . (6b)
more than a move at each time step, i.e. the sequence of steps 2—-7 @3,,,(z) andChmp(z) indicate aninimum phasandnon minimum
repeated more than once while the time is considered steady. phaselinear channel, respectively. A nonlinear channel, reported in
In order to render the adaptation procedure more flexible, the tofh. 2, C..;, was built cascading the chann@l,...,(z) and the non-
amount of repetitions of the sequence 2—7, indicated;;ads com- linear element: 4 0.22%. White Gaussian noise[n] with zero mean
puted according to a measure of environmental variations; defthings also added.

Fig. 5. Performance comparison. Chan@gl..,, (=) and filter-order 7.
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Fig. 7. Performance comparison. Nonlinear charifel and filter-order 7.
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IV. CONCLUSION

In this brief, we presented some modifications to the TS optimization
algorithm to solve time varying problems. We tested the performances
of the proposed method through the adaptive equalization of a commu-
nication channel using an FIR digital filter with combination of SPT co-
efficients. Results show a better quality of the adaptation process driven
by the TS than that achieved by the Q-NLMS. The better capability in
irregular domains of the TS is paid off by a greater computational ef-
fort.

Our intention was to introduce nonconventional optimization tech-
niques for adaptive filtering problems to provide for the lack of con-
vergence of the LMS-based algorithms. Further developments can cer-
tainly be made in the modification of the computational procedure and
in the design of suitable hardware architectures that could even equip
embedded systems using a general optimization engine.

SNR[dB]

12 16 20 22

(1]

[2

log(BER)
")

(3]

-6 (4]

—&— Proposed method M§WQ~NLMS 5]

Fig. 8. performance comparison. Nonlinear charfig] and filter-order 10.

(6]

We employed equalizers of orddf = 7 andN = 10 with coef- [l
ficients made of a sum of two SPT's, thus belonging to the following [g;
domain:

D={a € R|a =127 + 22792},
C12 € {_1,0,1}.9112E{O,l,"‘./B} (7)

[9]

[10]
where B has been set to 12 bits. [11]

Each test was composed of two phases: an adaptation phase, to tune
the filter coefficients by TS, and a measurement step, to evaluate thHe2]
performances using the BER index over a sequence of 5 million signal
samples.

The results were compared with those obtained using a quantizééS]
version of the normalized LMS algorithm, Q-NLMS, where the filter [14]
taps are rounded to the nearest elemer? @ffter each iteration. They
are plotted in the graphs of Figs. 3-8.

We obtain a better performance as the SNR increased. In fact, tl%s]
Q-NLMS algorithm was not able to control the quantization error, on
the contrary, TS could effectively contrast it by displaying only slightly
different performances over the channel range. [16]

A physical limit is also evident when we analyze the results as %17]
function of the equalizer order [3]: it is impossible to obtain lower BER
levels using linear systems, due to the inherent nonlinear nature of this
kind of problem. [18]

Concerning the computational burden, TS can suffer a drop in perfor-
mance with respect to the standard LMS-based algorithms. Howevey,
in order to guarantee the needed speed, a hardware real-time TS imple-
mentation can be simply tailored to this problem [1], [18].
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