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Power-of-Two Adaptive Filters Using Tabu Search

Stefano Traferro and Aurelio Uncini

Abstract—Digital filters with power-of-two or a sum of power-of-two co-
efficients can be built using simple and fast shift registers instead of slower
floating-point multipliers, such a strategy can reduce both the VLSI sil-
icon area and the computational time. Due to the quantization and the
nonuniform distribution of the coefficients through their domain, in the
case of adaptive filters, classical steepest descent based approaches cannot
be successfully applied. Methods for adaptation processes, as in theleast
mean squares(LMS) error and other related adaptation algorithms, can
actually lose their convergence properties. In this brief, we present a cus-
tomized Tabu Search (TS) adaptive algorithm that works directly on the
power-of-two filter coefficients domain, avoiding any rounding process. In
particular, we propose TS for a time varying environment, suitable for real
time adaptive signal processing. Several experimental results demonstrate
the effectiveness of the proposed method.

Index Terms—Adaptive digital filter, finite precision design of adaptive
digital filter, finite wordlength, global optimization, signed digit code,
signed power-of-two, tabu search.

I. INTRODUCTION

The use of adaptive systems, i.e., capable of altering their transfer
functions as the environment changes, appears in many applications,
such as the equalization of a communication channel or the automatic
control of a system. Many adaptation procedures are based on the use
of algorithms derived from the well-knownleast mean squares(LMS)
[16].

The growing need for high-speed processing in communication
hardware has attracted the attention of designers toward digital
FIR filters with signed power-of-two (SPT), or combinations of
SPT, coefficients. These architectures make it possible to compute
multiplications quickly and efficiently, as well as reducing the area on
a silicon chip, thus achieving a higher degree of integration and a high
throughput signal rate.

In the case of adaptive-filter fast hardware implementation, the
tuning optimization algorithms can require some modifications. The
solutions yielded by the LMS have to be rounded in some way. In [17],
the authors proposed a hardware solution to perform the stochastic
gradient algorithm. A power-of-two quantizer is used for the equalizer
output error, and a hard limiter for the receiving data to reduce
the multiplication to a simple shift. Such an approach, here called
the log-log LMS algorithm, is presented in [12], where the authors
proposed only a fast adaptation algorithm, while the filtering section is
unchanged and the filter coefficients are represented as floating-point.
On the contrary, to assure a high filter-throughput rate, we also need a
fast filtering section to avoid a cumbersome hardware multiplier.

In this work, we propose a new adaptive method based on the Tabu
Search (TS) optimization algorithm [6]–[8], that works directly on the
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quantized filter coefficients domain made of a sum of SPT’s. The pro-
posed method avoids any coefficient rounding and is suitable for a
simple hardware implementation [1], [2], and [18].

The TS algorithm has been widely employed in typical operational
research problems and for static digital filter design [4], [5], [15]; here,
we have exploited its capability in finding optimal points in a dynamical
search space.

In the case of SPT static filter design, some researchers have tried to
use nonconventional optimization procedures, like the Genetic Algo-
rithm (GA) [9], [11] or Simulated Annealing (SA) [10]. However, due
to their slow convergence properties, algorithms like GA or SA cannot
be straightforwardly used for fast adaptive DSP applications.

In Section II, we simply introduce the TS algorithm, derive some
functional conditions, and work out simple modifications so that the
employed method is able to track the solution in a time-varying cost-
function environment. In Section III, we indicate a brief formulation of
the equalization problem and report some experimental results.

II. TS OPTIMIZATION ALGORITHM

TS is a heuristic technique for solving combinatorial optimization
problems on a wide range of applications. It was introduced by Glover
[6]–[8] in the late 1970’s and is being adapted to certain engineering
problems.

Unlike other combinatorial optimization algorithms, as in GA or SA,
where each step is performed independently from the previous moves,
TS keeps trace of the visited region in the search space in order to avoid
entrapment in local minima and to prevent cycling. The search mech-
anism can be viewed as a dynamic system which makes it possible to
reduce the amount of inspected points and, consequently, the compu-
tational burden.

A. The Basic TS Algorithm

Let us define our notation to describe a basic version of the TS algo-
rithm:
X the discrete domain of the optimization problem; it is also

named feasible region;
x 2 X the variables array;
f(�) the objective function. Its value, evaluated on a pointx, is

indicated asz = f(x) throughout the text;
x
� 2

X

the point of the domain wheref(�) reaches its minimum,
z� = f(x�);

�(�) a function, usually calledmove, which generates a new
point during the search phase. It is defined as�:X ! X,
i.e., �(x) 2 X. Each move is associated with a value
indicated asmove value, mv = f(�(x)) � f(x), and a
tabu statuswhich states whether it is forbidden;

CL(x) the Candidate List representing a set of different moves
applicable to the pointx, CL(x) = f�j�(x) 2 X; 8�g;

T is the Tabu Set that collects the forbidden moves. A move
is considered tabu, i.e., prohibited, if it has applied less
than� past iterations. The coefficients� is defined astabu
tenure.

TS is a searching algorithm which visits the feasible regionX to
look for the points where the objective function reaches its minima. It
exploits a prohibiting mechanism to avoid the most recent moves to be
repeated in order to escape from local minima and prevent cycling. The
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following pseudo-code illustrates a basic version of the TS, where 
denotes an assignment operation.

1) Initialization phase:
x x0 2 X, x�  x, z�  f(x�), T  ; (empty set),
k  0 (iteration counter)

2) Compute the Candidate List,CL(x) = f�j�(x 2 X; 8�g
3) If CL(x)� T = ; then go to step 7)
4) Choose the best move inCL(x)� T; �k
5) Update the trial solutionx  �k(x)
6) If f(x) < z� thenx�  x, z�  f(x�)
7) UpdateT
8) Increment the iteration counter,k
9) If k < kmax then go to step 2)
End: the solution isx� andz� = f(x�).

Each step through the domain is performed using the minimum-
valued nontabu move chosen from the Candidate List,CL (steps 2–5).
The solutionx� and the Tabu SetT are updated when every move has
been executed (steps 6 and 7). In practice,T is implemented as� length
first-in first-out queue: when a move enters intoT , during thekth iter-
ation, the one executed at iteration(k� �) escapes. In other words,T
encapsulates the short term memory on which the algorithm is based,
in order to carry out its search.

More sophisticated selection mechanisms can be introduced during
step 4. They are calledaspiration, intensification, diversification, and
strategic oscillation,and are well described in [6]–[8].

The efficiency of the algorithm depends heavily on the type of en-
coding used for the domain variables and the constraints. In the basic
implementations of TS, the only quantity to tune is the tabu tenure� .

B. TS for Time-Varying Problems

TS has only been applied in static optimization problems. On the
contrary, in adaptive applications, the functional characteristics change
as time elapses. Referring to a fixed-coefficients domain, we have to
solve the following formal problem:

min f(x; t); x 2 X � <N (1)

wheref(�) is the objective function,X denotes the feasible region for
the coefficients andt explicitly indicates the temporal dependence. It
is easy to perceive that the solution,x

� is, in general, connected to the
temporal parametert, x�(t), so that the training heuristic must be able
to track the variation of the functional as time elapses while remaining
in the search space.

In order to tailor TS to a temporal problem, we define a property
calledtemporal coherence. When we bring TS from a steady to a tem-
poral varying environment, we want the actions it performs to maintain
their meaning to produce the same effects. We call such behaviortem-
poral coherence. It is not trivially guaranteed in every condition and
sometimes requires high computational power.

We shall study this property by analyzing three aspects of the algo-
rithm stated more extensively here:

2) the selection of the best move fromCL(x)� T (step 4);
3) the admissibility mechanism;
4) the solution updating (step 6).

Fig. 1. Channel equalization scheme.

Fig. 2. Nonlinear channel model used in the experiment.

As specified in the previous section, every move�(x) is associated
to a valuemv, defined as the variation of the objective function value
due to the move operation. In a time varying environment, the param-
etert induces a modification inside thef(�), thus for each move�, we
have

mv(�) = f(�(x); t1)� f(x; t0) (2)

where the subscript 0 indicates the instant when the solution has been
updated the last time. This quantity can be divided into two parts

mv(�) = ff(�(x); t1)� f(x; t1)g+ ff(x; t1)� f(x; t0)g (3)

where the former states the variation of the objective function value
due to the translation�, while the latter is due to the time elapsed. The
change induced by a move can be kept under control by the heuristic,
whereas the last term can be seen as an external agent. If we generate
CL in a sequential manner, we will evaluate each move at different
times. Consequently, the comparison process in step 4 becomes mean-
ingless, as the selection is performed between different objective func-
tions. This effect is more evident if the objective function temporal vari-
ations are greater than the descending steps.

In order to avoid temporal incoherence, the algorithm remains sta-
tionary during the execution of steps 2–4.

The second issue to analyze is the role of the short-term memory,
accomplished through the Tabu SetT , in a nonstationary environment.
In the static case, it is useful to avoid trapping in local minima, though
when we deal with a dynamical objective function, this task can au-
tomatically be done because of the time variation of the cost func-
tion surface. The setting of the tabu tenure is less critical than in the
steady-state case, even though we must always consider its constraining
effect during the exploration of the search space.

The last aspect of the TS to study is the storage of the best objective
function value ever found during the execution of the heuristic,z� =
f(x�) (step 6). In the time-varying case, this reference totally loses its
meaning. The cost function used to compute z* no longer exists (when
time elapses, the temporal coefficients change their value, making the
function different), thus the solution is not updated when TS finds a
better minimum, but only if the objective function value is lower than
that in the pointx�. The use of the quantityz� puts an uncontrollable
element into the heuristic when the temporal variations are prominent.
Therefore, the adoption of this quantity, as in the stationary case, makes
the algorithm temporally incoherent.
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Fig. 3. Performance comparison. ChannelC (z) and filter-order 10.

Fig. 4. Performance comparison. ChannelC (z) and filter-order 7.

Fig. 5. Performance comparison. ChannelC (z) and filter-order 7.

A simple way to avoid the latter drawbacks consists in executing
more than a move at each time step, i.e. the sequence of steps 2–7 is
repeated more than once while the time is considered steady.

In order to render the adaptation procedure more flexible, the total
amount of repetitions of the sequence 2–7, indicated as�it, is com-
puted according to a measure of environmental variations; defining�

Fig. 6. Performance comparison. ChannelC (z) and filter-order 10.

as the relative difference betweenf(x; t) and the minimum of the cost
function within a given temporal window, we adopt the following rule:

�it(�) =

1; � � 0

[(mit � 1)�] + 1; 0 < � < 1

mit; � � 1

(4)

where[�] denotes the integral part andmit is set to ten. We also use a
simple aspiration criterion within the TS mini-cycle, and the tabu tenure
� is set as half the total number of repetitions in order to reduce loop
length in the average.

III. EXPERIMENTAL RESULTS

In the case of adaptive SPT filters, classical algorithms, like LMS or
its quantized version, denoted as Q-LMS, lose their convergence prop-
erties, as they deal with discrete domains [17]; thus, in order to verify
the effectiveness of the proposed method, we decided to apply the TS
heuristic to the problem of a linear equalization of a communication
channel using the RLS criterion [13], [16].

We considered the channel equalization scheme described in Fig. 1,
wheres[n] is the transmitting binary sequence,C(z) states the equiv-
alent transfer function of the communication channel [13],n[n] de-
notes the noisy sequence,y[n] indicates the output of the linear adap-
tive equalizer whose transfer function isH(z), d[n] is the target signal
obtained delaying the sequences[n], ande[n] states the error which
drives the TS to tune the coefficients of the linear SPT FIR filter.

We chose the classical RLS objective function to minimize

"[n] =

n

k=n�R+1



n�k

e[k]2; e[k] = d[k]� x
T
k � h (5)

where the inner productxTk � h represents the output of the
equalizer with tapsh at instant k; the vectorsxk and h are
defined asxk = (x[k]; x[k � 1]; � � � ; x[k � N + 1])T and
h = (h1[n]; h2[n]; � � � ; hN [n])T , respectively, andN denotes the
order of the filter. The weighting coefficient
 (called forgetting
factor) has been set to 1,R indicates the temporal window length and
has been set to 75 samples.

Simulations employed two linear channels are

Cmp(z) =1� 0:8z�1 + 0:5z�2 (6a)

Cnmp(z) =0:3482 + 0:8704z�1 + 0:3482z�2: (6b)

Cmp(z) andCnmp(z) indicate aminimum phaseandnon minimum
phaselinear channel, respectively. A nonlinear channel, reported in
Fig. 2,Cnl, was built cascading the channelCnmp(z) and the non-
linear elementx + 0:2x2. White Gaussian noisen[n] with zero mean
is also added.
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Fig. 7. Performance comparison. Nonlinear channelC and filter-order 7.

Fig. 8. performance comparison. Nonlinear channelC and filter-order 10.

We employed equalizers of orderN = 7 andN = 10 with coef-
ficients made of a sum of two SPT’s, thus belonging to the following
domain:

D = f� 2 <j� = c12
�g

+ c22
�g g;

c1;2 2 f�1; 0; 1g; g1;2 2 f0; 1; � � � ; Bg (7)

whereB has been set to 12 bits.
Each test was composed of two phases: an adaptation phase, to tune

the filter coefficients by TS, and a measurement step, to evaluate the
performances using the BER index over a sequence of 5 million signal
samples.

The results were compared with those obtained using a quantized
version of the normalized LMS algorithm, Q-NLMS, where the filter
taps are rounded to the nearest element ofD after each iteration. They
are plotted in the graphs of Figs. 3–8.

We obtain a better performance as the SNR increased. In fact, the
Q-NLMS algorithm was not able to control the quantization error, on
the contrary, TS could effectively contrast it by displaying only slightly
different performances over the channel range.

A physical limit is also evident when we analyze the results as a
function of the equalizer order [3]: it is impossible to obtain lower BER
levels using linear systems, due to the inherent nonlinear nature of this
kind of problem.

Concerning the computational burden, TS can suffer a drop in perfor-
mance with respect to the standard LMS-based algorithms. However,
in order to guarantee the needed speed, a hardware real-time TS imple-
mentation can be simply tailored to this problem [1], [18].

IV. CONCLUSION

In this brief, we presented some modifications to the TS optimization
algorithm to solve time varying problems. We tested the performances
of the proposed method through the adaptive equalization of a commu-
nication channel using an FIR digital filter with combination of SPT co-
efficients. Results show a better quality of the adaptation process driven
by the TS than that achieved by the Q-NLMS. The better capability in
irregular domains of the TS is paid off by a greater computational ef-
fort.

Our intention was to introduce nonconventional optimization tech-
niques for adaptive filtering problems to provide for the lack of con-
vergence of the LMS-based algorithms. Further developments can cer-
tainly be made in the modification of the computational procedure and
in the design of suitable hardware architectures that could even equip
embedded systems using a general optimization engine.
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