
Reprinted from

Neural Computation 12, 1901–1927 (2000)
2000 Massachusetts Institute of Technology

A Signal-Flow-Graph Approach to On-line
Gradient Calculation

Paolo Campolucci, Aurelio Uncini, Francesco Piazza

Dipartimento di Elettronica e Automatica - Università di Ancona
Via Brecce Bianche, 60131 Ancona-Italy.

Fax:+39 (071) 2204464 - URL: http://nnsp.eealab.unian.it/

_______________________________________

LETTER Communicated by Andrew Back

A Signal-Flow-Graph Approach to On-line Gradient
Calculation

Paolo Campolucci∗
Aurelio Uncini
Francesco Piazza
Dipartimento di Elettronica ed Automatica, Università di Ancona, 60121 Ancona, Italy

A large class of nonlinear dynamic adaptive systems such as dynamic
recurrent neural networks can be effectively represented by signal flow
graphs (SFGs). By this method, complex systems are described as a gen-
eral connection of many simple components, each of them implementing
a simple one-input, one-output transformation, as in an electrical circuit.
Even if graph representations are popular in the neural network commu-
nity, they are often used for qualitative description rather than for rigor-
ous representation and computational purposes. In this article, a method
for both on-line and batch-backward gradient computation of a system
output or cost function with respect to system parameters is derived by the
SFG representation theory and its known properties. The system can be
any causal, in general nonlinear and time-variant, dynamic system repre-
sented by an SFG, in particular any feedforward, time-delay, or recurrent
neural network. In this work, we use discrete-time notation, but the same
theory holds for the continuous-time case. The gradient is obtained in a
straightforward way by the analysis of two SFGs, the original one and its
adjoint (obtained from the first by simple transformations), without the
complex chain rule expansions of derivatives usually employed.

This method can be used for sensitivity analysis and for learning both
off-line and on-line. On-line learning is particularly important since it is
required by many real applications, such as digital signal processing, sys-
tem identification and control, channel equalization, and predistortion.

1 Introduction

For many practical problems such as time-series forecasting and classifica-
tion, identification, and control of nonlinear dynamic systems, feedforward
neural networks (NNs) are not adequate; therefore several recurrent neu-
ral network (RNN) architectures have been proposed (Tsoi & Back, 1994;

∗ Note: Address reprint request or comments to Paolo Campolucci at campoluc@
tiscalinet.it.

Neural Computation 12, 1901–1927 (2000) c© 2000 Massachusetts Institute of Technology



1902 P. Campolucci, A. Uncini, and F. Piazza

Nerrand, Roussel-Ragot, Personnaz, Dreyfus, & Marcos, 1993; Narendra &
Parthasarathy, 1991). RNNs can be essentially divided into three classes:
fully recurrent NNs (FRNNs) (Williams & Peng, 1990; Williams & Zipser,
1989; Haykin, 1994), locally recurrent globally feedforward NNs (Back &
Tsoi, 1991; Tsoi & Back, 1994; Campolucci, Piazza, & Uncini, 1995; Cam-
polucci, Uncini, Piazza, & Rao, 1999), and NARX architectures (Haykin,
1994; Narendra & Parthasarathy, 1991; Horne & Giles, 1995).

In order to train an RNN adaptively, an on-line learning algorithm must
be derived for each specific architecture. In many learning algorithms, the
gradient of a cost function must be estimated and then used in a parameter
updating scheme (e.g., steepest descent or conjugate gradient). By gradient
we mean the vector of derivatives of a given variable (here a system output
or a function of it, e.g., a cost function) with respect to a set of parameters
that influence such a variable (here, the parameters of a subset of network
components).

When RNNs (or, in general, systems with feedback) are involved, the
calculation of the gradient is more complex and difficult than in the case of
feedforward neural networks (or systems without feedback). Due to feed-
back, in fact, the current output depends on the past outputs of the RNN, so
that the present output depends not only on the present parameters but also
on the past parameter values, and this dependence has to be considered in
calculating the gradient. Quite often in the neural network literature, this
dependence has been totally or partially neglected to simplify the derivation
of the gradient.

There are two different schemes to compute the gradient: the forward
computation approach and the backward computation approach. These two
names stem from the order in time in which the computations take place.
Forward means that both time and propagation of gradient information
across the network flow as in the forward pass (i.e., the computation of
the network outputs from its inputs); backward indicates the opposite flow.
Real-time recurrent learning (RTRL) (Williams & Zipser, 1989) and truncated
backpropagation through time (truncated BPTT) (Williams & Peng, 1990)
implement the forward and backward on-line computation, respectively.

The major drawback of the forward computation over the backward
one is its high computational complexity (Williams & Peng, 1990; Williams
& Zipser, 1994; Srinivasan, Prasad, & Rao, 1994; Nerrand et al., 1993). On
the other hand, the use of the backward technique in the case of RNNs
with arbitrary architectures is not straightforward; the mathematics of each
particular architecture has to be worked out. For systems with feedback
or with internal time delays, the chain rule derivation can easily become
complex and sometimes intractable (Werbos, 1990; Williams & Zipser, 1994;
Back & Tsoi, 1991; Pearlmutter, 1995; Campolucci et al., 1999).

An interesting approach to the computation of gradient information in
RNNs with arbitrary architectures was proposed by Wan and Beaufays
(1996), who used a diagrammatic derivation to obtain the BPTT batch al-

Signal-Flow-Graph Approach to On-line Gradient Calculation 1903

gorithm. The idea underlying their method is to describe the neural net-
work by a graph model composed of some basic blocks, including sum-
ming junctions, branching points, nonlinear functions, weights, and delay
operators. Then another graph is introduced to compute the gradient sub-
stituting summing junctions with branching points, and vice versa; nonlin-
ear functions with gains; and delay operators with “advance” operators,
while the weights are just replicated in the new graph (named reciprocal
network).

This method considers the derivative system obtained in linearizing the
original network. Unfolding the network, multiplying the network output
by the error at the proper time step, and applying the interreciprocity prop-
erty, it is possible to get the desired gradient information by the transposed
graph corresponding to the unraveled derivative network. The reciprocal
network is this transposed network raveled back in time.

The derived method can be computed only in batch mode since the re-
ciprocal network is not causal due to the presence of the noncausal advance
operators. The advance operators arise from the unfolding and transposing
operations on which the method is based.

Following the graph approach, now using the signal-flow-graph (SFG)
representation theory and its known properties (Mason, 1953, 1956; Lee,
1974; Oppenheim & Schafer, 1975), in this article we propose a backward
computation (BC) method that implements the BPTT algorithm for both
on-line and batch-backward gradient computation of a function (e.g., a cost
function) of the system output with respect to some parameters. This system
can be any causal, nonlinear, and time-variant dynamic system represented
by an SFG—in particular, any feedforward (static), time-delay, or RNN. In
the following, we shall usually consider the NN framework, but the method
is fully general. In this work, we use discrete-time notation; however, the
theory holds for the continuous-time case.

The new method has been developed mainly for on-line learning. On-line
training of adaptive systems is very important in real applications such as
digital signal processing, system identification and control, channel equal-
ization, and predistortion, since it allows the model to follow time-varying
features of the real system without interrupting the system operation itself
(such as a communication channel). It can also be used for off-line learn-
ing; in this case, when a mean-squared-error (MSE) cost function is consid-
ered, this approach gives the batch BPTT algorithm and is equivalent to the
method by Wan and Beaufays (1996).

While we provide a proof based on a theorem (Lee, 1974), similar to Tel-
legen’s theorem for analog network, the proof by Wan and Beaufays (1996)
for their diagrammatic derivation is based on the interreciprocity property
of transposed graphs, that is, a consequence of the theorem used here. They
also propose a proof of the equivalence of RTRL and BPTT in batch mode
to show that the computed weight variations are the same, though the com-
plexities of the two algorithms are different. Beaufays and Wan (1994) do not



1904 P. Campolucci, A. Uncini, and F. Piazza

address the problem of graphical derivation of RTRL, as in Wan and Beau-
fays (1996) for BPTT; nevertheless, the two approaches have been combined
for that purpose in Wan and Beaufays (1998), where a diagrammatic deriva-
tion of an on-line learning method is reported. However, the resulting RTRL
algorithm has a very high computational complexity—O(n2) compared to
O(n) of the on-line backward method presented here.

In this comparison, it should be considered that any on-line backward
method needs a truncation of the past history; forward methods such as
RTRL do not. However, it is known (Williams & Peng, 1990) that RTRL also
involves a different kind of approximation due to the fact that the weights
change in time during learning. To mitigate this problem, an exponential
decay on the contributions from past times can be used (Gherrity, 1989);
nevertheless, no reduction of the computational complexity can be achieved
as provided by the BPTT truncation strategy.

The work presented here also generalizes previous work by Osowski
(1994), which proposed an SFG approach to neural network learning. That
work was basically developed for feedforward networks, and the proposed
extension to recurrent networks is valid only for networks that relax to a
fixed point, as in the work of Almeida (1987); moreover, it is not possible
to accommodate delay branches in this framework. General recurrent net-
works able to process temporal sequences cannot be trained by the proposed
adjoint equations.

Another related work is that by Martinelli and Perfetti (1991), which
applies an adjoint transformation to an analog real circuit implementing a
multilayer perceptron (MLP) and obtaining a circuit that implements back-
propagation. Since this work is more related to hardware and the network is
feedforward and static, it is less general and can be considered a particular
case of the method presented here.

Finally, our formulation allows dealing with both the learning problem
and the sensitivity calculation problem, that is, the problem of computing
the derivatives of the system output with respect to some internal param-
eters. These derivatives can be used for designing robust electrical or nu-
merical circuits.

The concepts detailed in this article were developed as part of Paolo Cam-
polucci’s doctorate research and presented in detail in Campolucci (1998)
and briefly introduced in (Campolucci, Marchegiani, Uncini, and Piazza
(1997) and Campolucci, Uncini, and Piazza (1998).

2 Signal Flow Graphs and Lee’s Theorem

A large class of complex systems, such as RNNs, can be represented by an
SFG. Therefore in this section, SFG notation and properties will be outlined
following Lee’s approach (1974). A different notation and properties of SFGs
were also introduced by Oppenheim and Schafer (1975); the SFG theory was
first developed by Mason (1953, 1956).

Signal-Flow-Graph Approach to On-line Gradient Calculation 1905

Figure 1: Signal-flow-graph definitions. If IA is the set of indexes of branches
that comes in node A and ZA the set of indexes of branches that comes out from
node A, then the following holds: xj = ∑

i∈IA
vi, ∀j ∈ ZA.

An SFG is defined as a set of nodes and oriented branches. A branch
is oriented from node a to node b if node a is the initial node and node
b is the final node of the branch. An input node is one that has only one
outgoing branch, the input branch, and no incoming branch. Associated
with the input branch is an input variable uj. An output node is one that has
only one incoming branch, the output branch. Associated with the output
branch is an output variable yj. All other nodes besides the input and output
nodes are called n-nodes. All other branches besides the input and output
branches are called f -branches.

There are two variables related by a function associated with each of the f -
branches: the initial variable xj, at the tail of the branch, and the final variable
vj, at the head of the branch. The relationship between the initial and final
variables for branch j is vj = fj[xj], where fj[.] is a general function describing
the operator (or circuit component) of the jth branch. By definition, for each
n-node, the value of the xj variables associated with its outcoming branches
is the sum of all the vj variables associated with its incoming branches (see
Figure 1). Let the SFG consist of p + m + r nodes (m input nodes, r output
nodes, and p n-nodes), and q + m + r branches (m input branches, r output
branches, and q f -branches). Note that only the branches (and not the nodes)
are indexed; therefore, all the reported indexes are to be considered as branch
indexes.

In the case of discrete-time systems, the functional relationship between
the variables xj and vj of the jth f -branch (expressed as vj = fj[xj]) is usually
assumed to be:

{
vj(t)= gj[xj(t), αj(t), t] for a static branch (without memory)

vj(t)=q−1xj(t)
�= xj(t − 1) for a delay branch (one unit memory),

(2.1)

(2.2)

where q−1 is the delay operator and gj is a general differentiable function,
which can depend on an adaptable parameter (or vector of parameters) αj
and also on time t to allow shape adaptation or variation in time of the
nonlinearity. For a static branch, the relationship between xj and vj often



1906 P. Campolucci, A. Uncini, and F. Piazza

Figure 2: SFG representation of a generic system.

particularizes as

{
vj(t) = wj(t)xj(t) for a weight branch
vj(t) = fj(xj(t)) for a fixed nonlinear branch,

(2.3)

where wj(t) is the jth (i.e., belonging to the jth branch) weight parameter
of the system at time t, and fi is a differentiable function again of the jth
branch. In the neural networks context, wj(t) is a synaptic weight and fj a
sigmoidal activation function. However, equation 2.1 can represent more
general nonlinear adaptable functions controlled by a parameter (or vector
of parameters) αj, such as the recently introduced spline-based activation
functions (Uncini, Vecci, Campolucci, & Piazza, 1999). We are now able to
state the following definitions:

Definition 1 (SFG). The SFG GN that represents the system is given by the
connection (with or without feedback) of the branches described by equations 2.1,
2.2, and possibly 2.3 (see Figure 2).

The branches (components) are conceptually equivalent to the components
of an electrical circuit, and the relationship between the SFG and the im-
plemented system is the same as that between the electrical circuit and
the system it implements. Not all the SFG can represent real systems. It
is known, in fact, that in order to be computed, an SFG has to satisfy the
constraint that each loop must include at least one delay branch.

Definition 2 (reversed SFG). A reversed SFG ĜN of a given SFG GN is a mem-
ber of the set of SFGs obtained by reversing the orientation of all the branches in GN,
that is, by replacing the summing junctions with branching points, and vice versa.

Let ûj, ŷj, x̂j and v̂j, be the variables associated with the branches in ĜN

corresponding to uj, yj, xj, and vj in GN. In ĜN the input variables are ŷj

Signal-Flow-Graph Approach to On-line Gradient Calculation 1907

j = 1, . . . , r, the output variables are ûj j = 1, . . . , m, and v̂j and x̂j are
the initial and the final variable of the jth f -branch, respectively. Let the
indexes assigned to the branches of ĜN be the same as the indexes assigned
to the corresponding branches of GN. Node indexes are not required by this
development. The functional relationships between the variables x̂j and v̂j

in ĜN are generic; therefore, the graph ĜN effectively belongs to a set of
SFGs. For an example of SFG, see Figures 3 (a–b).

Definition 3 (transposed SFG). The transposed SFG is a particular reversed
SFG such that the relationships of the corresponding branches of GN and ĜN remain
the same.

For a generic SFG, the following theorem, similar to Tellegen’s theorem for
electrical network (Tellegen, 1952; Penfield, Spence, & Duiker, 1970), was
derived by Lee (1974). It relies on the topological properties of the original
and reversed graphs, not on the functional relationships between the branch
variables, which therefore can be described by any mathematical relation.

Theorem 2.1. Consider a causal dynamic system (Lee, 1974). Let GN be the
corresponding SFG and ĜN a generic reversed SFG. If ûj, ŷj, x̂j, and v̂j, are the
variables in ĜN corresponding to uj, yj, xj, and vj in GN, respectively, then

r∑
j=1

ŷj(t)∗yj(t)+
q∑

j=1

x̂j(t)∗xj(t) =
m∑

j=1

ûj(t)∗uj(t)+
q∑

j=1

v̂j(t)∗vj(t) (2.4)

holds true, where “∗” denotes the convolution operator, that is,

y(t) ∗ x(t) =
t∑

s=t0

y(t − s)x(s) (2.5)

where t0 is the initial time.

For a static system the following equation holds:

r∑
j=1

ŷjyj +
q∑

j=1

x̂jxj =
m∑

j=1

ûjuj +
q∑

j=1

v̂jvj. (2.6)

3 Sensitivity Computation

In network theory, a sensitivity is usually defined as the derivative of a cer-
tain output with respect to a given parameter. A general method to compute
sensitivities of a dynamic continuous-time system represented by a SFG was



1908 P. Campolucci, A. Uncini, and F. Piazza

Figure 3: (a) A simple IIR-MLP neural network with two layers, two inputs,
one output, and one neuron in the first layer, with two IIR filter synapses (one
zero, one pole transfer function) and one neuron in the second layer, with one
IIR filter synapsis (two zeros, two poles, transfer function). (b) A section of its
SFG GN. (c) Its adjoint SFG Ĝ(a)

N .

Signal-Flow-Graph Approach to On-line Gradient Calculation 1909

derived by Lee (1974) for constant parameters. Similarly, an analogous re-
sult can be found for a discrete-time system; however, such a derivation can
be used only for sensitivity computation in batch mode. Here we present a
method to compute the sensitivity with respect to time-varying parameters,
that is, the derivative of a system output with respect to past or present pa-
rameters (the weights wi and the nonlinearity control parameters αi). For an
adaptive system, they will depend on time; therefore, the derivatives with
respect to such parameters will also depend on time. This is a generalization
of work by Lee (1974) and Wan and Beaufays (1996).

The derivative of an output yk(t) of the system with respect to the pa-
rameter wi(t − τ), where t is the time of the original SFG and τ a positive
integer (t ≥ 0 and 0 ≤ τ ≤ t), by the first equation in equation 2.3 is

∂yk(t)
∂wi(t − τ)

= ∂yk(t)
∂vi(t − τ)

∂vi(t − τ)

∂wi(t − τ)
= ∂yk(t)

∂vi(t − τ)
xi(t − τ), (3.1)

where k = 1, . . . , r and i spans over the set of indexes of the weight branches.
For the parameters of the nonlinear function, by equation 2.1, the following
more general expression holds:

∂yk(t)
∂αi(t − τ)

= ∂yk(t)
∂vi(t − τ)

∂vi(t − τ)

∂αi(t − τ)
= ∂yk(t)

∂vi(t − τ)

∂gi

∂αi

∣∣∣∣
xi(t−τ),αi(t−τ),t−τ

�= ∂yk(t)
∂vi(t − τ)

g′
i(t − τ), (3.2)

where k = 1, . . . , r and i spans over the set of indexes of the nonlinear
parametric branches, and a simplified notation for the derivative of gi is
implicitly defined.

In both cases we need to compute the term ∂yk(t)/∂vi(t − τ), which is
the derivative of the kth output variable at time t with respect to a signal
in the system, that is, the final variable of the ith f -branch at time t − τ . As
for the computation of the sensitivity in an electrical circuit, in this case an
adjoint network can be introduced to perform this task. The main idea is
to apply Lee’s theorem (equation 2.4) to the SFG GN of the original system
and a particular reversed SFG ĜN, here called adjoint SFG or Ĝ(a)

N . It can be
easily seen (see the proof in the appendix) that expression 2.4 holds true
also when small variations of the variables are considered:

r∑
j=1

ŷj(t) ∗ �yj(t) +
q∑

j=1

x̂j(t) ∗ �xj(t) =
m+1∑
j=1

ûj(t) ∗ �uj(t)

+
q∑

j=1

v̂j(t) ∗ �vj(t).

Since the functional relationships of the branches of Ĝ(a)
N can be freely cho-

sen, because equation 2.4 does not depend on them, these relationships are



1910 P. Campolucci, A. Uncini, and F. Piazza

Table 1: Adjoint SFG Construction Rules.

Note: For batch adaptation, the adjoint branches must be defined, remem-
bering that t = T in this case, where T is the final instant of the epoch.

chosen in order to obtain an estimate of ∂yk(t)
∂vi(t−τ)

from this equation. Thus we
can now state the following:

Definition 4 (adjoint SFG). The adjoint SFG Ĝ(a)
N is the particular reversed

graph whose f -branch relationships are related to the f -branch equations of the
original graph GN by the correspondence reported in Table 1.

Table 1 shows that for each delay branch in the original SFG, the cor-
responding branch of the adjoint SFG is a delay branch (with zero initial
condition). The nonlinearity without parameters fj in the original SFG cor-
responds to a gain equal to the derivative of fj evaluated at the value of
the initial variable of the branch at time t − τ in the adjoint SFG, where t is
the time of the original SFG and τ is that of the adjoint SFG. The weight at
time t corresponds to the weight at time t − τ in the adjoint SFG. A similar

Signal-Flow-Graph Approach to On-line Gradient Calculation 1911

transformation should be performed for the general nonlinearity with con-
trol parameters. The outputs of the original SFG correspond to the inputs
of the adjoint SFG. For an example of adjoint SFG construction for a simple
MLP with infinite impulse response (IIR) filter synapses, see Figure 3.

Moreover, the inputs of the adjoint SFG must be set to an impulse in
correspondence with the output of GN of which the sensitivity has to be
computed, and to a constant null signal in correspondence with all the
other outputs. In other words, to compute the value of ∂yk(t)/∂vi(t − τ), the
input of the adjoint SFG should be:

ŷj(τ ) =




0 ∀τ if j �= k{
1, τ = 0
0, τ > 0 if j = k

j = 1, . . . , r. (3.3)

Let ûj, ŷj, x̂j, and v̂j, be the variables associated with the branches in Ĝ(a)
N

corresponding to uj, yj, xj, and vj in GN; it follows (see the proof in the
appendix) that

∂yk(t)
∂vi

(t − τ) = v̂i(τ ), (3.4)

where k = 1, . . . , r and i = 1, . . . , q. Using this result in equation 3.1, we get

∂yk(t)
∂wi(t − τ)

= v̂i(τ )xi(t − τ). (3.5)

This result states that the derivative of an output variable of the SFG at time
t with respect to its weight parameter wi(t− τ) at time t− τ is the product of
the initial variable of the ith branch in the original SFG at time t − τ and the
initial variable of the corresponding branch in the adjoint graph at τ time
units. This result can be easily generalized for the nonlinear parametric
function as follows:

∂yk(t)
∂αi(t − τ)

= v̂i(t)g′
i(t − τ). (3.6)

4 SFG Approach to Learning in Nonlinear Dynamic Systems

In the previous section, we showed how the SFG of the original network
GN and the SFG of the adjoint network Ĝ(a)

N can be used to compute the
sensitivity of an output with respect to a past or present system parameter
(equations 3.5 and 3.6).

Now we show how to use this technique to adapt a dynamic network,
minimizing a supervised cost function with respect to the network param-
eters. The idea is to consider the cost function itself as a network connected



1912 P. Campolucci, A. Uncini, and F. Piazza

in cascade to the dynamical network to be adapted. Therefore, the entire
system (named GS in the following) has as inputs the inputs of the original
network and the desired outputs, while the value of the cost function is its
unique output. The gradient of this output (i.e., of the cost function) with
respect to the system parameters (e.g., weights) now corresponds to the
sensitivity of this output, which can be computed by using equations 3.5
and 3.6 again, applied now to the cascade system GS.

4.1 Cost Functions and Parameter Updating Rules. Let us consider a
discrete-time nonlinear dynamic system with inputs uk, k = 1, . . . , m, out-
puts yk, k = 1, . . . , r, and parameters wi and αi, which have to be adapted
with respect to an output error. Using gradient-based learning and follow-
ing the steepest-descent updating rule, it holds, for example, for the weight
wi

�wi = −µ
∂ J
∂wi

, µ > 0, (4.1)

where J is the cost function, �wi is the variation of the parameter wi, and
µ is the learning rate. The major problem is given by the calculation of the
derivative ∂ J/∂wi.

Since for on-line learning the parameters can change at each time instant,

∂ J
∂wi

=
t∑

τ=0

∂ J
∂wi(τ )

=
t∑

τ=0

∂ J
∂wi(t − τ)

. (4.2)

As the length of the summation linearly increases with the current time
step t, the summation in equation 4.2 must be truncated in order to imple-
ment the algorithm,

�wi(t) = −µ

t∑
τ=t−h+1

∂ J
∂wi(τ )

= −µ

h−1∑
τ=0

∂ J
∂wi(t − τ)

, (4.3)

where h is a fixed positive integer. In this way, not all the history of the system
is considered but only the most recent part in the interval [t − h + 1, t]. It
is easy to show that a real truncation is necessary only for circuits with
feedback, such as RNN, while for feedforward networks with delays (e.g.,
time delay NN, or TDNN) a finite h can be chosen, so that all the memory
of the system is taken into account. An optimal selection of h requires an
appropriate choice for each parameter to be adopted. For layered TDNN, h
should depend on the layer and should be increased moving from the last
to the first layer, since more memory is involved.

The updating rule (see equations 4.2 and 4.3) holds theoretically in the
hypothesis of constant weights, but practically it is only a good approxima-
tion. Equations 3.5 and 3.6 do not require that hypothesis and can be used

Signal-Flow-Graph Approach to On-line Gradient Calculation 1913

in a more general context. Equations equivalent to 4.1, 4.2, and 4.3 can also
be written for the parameters αi.

The most common choice for the cost function J is the MSE. The instan-
taneous squared error at time t is defined as

e2(t) =
r∑

k=1

e2
k(t) with ek(t) = dk(t) − yk(t), (4.4)

where dk(t) k = 1, . . . , r are the desired outputs. So the MSE over a time
interval [t0, t1] is given by

E(t0, t1) =
t1∑

t=t0

e2(t). (4.5)

In the case of batch training, the cost function can be chosen as the MSE
over the entire learning epoch E(0, T), where T is the final time of the epoch,
whereas for on-line training only the most recent errors e2(t) must be consid-
ered, for example, using E(t−Nc+1, t) with the constant Nc properly chosen
(Nerrand et al., 1993; Narendra & Parthasaraty, 1991). Therefore it holds:




E(t − Nc + 1, t) =
t∑

s=t−Nc+1

e2(s) on-line training

E(0, T) =
T∑

s=0

e2(s) batch training.

Assuming J = E(t0, t1), it follows that

�wi(t) = −µ

h−1∑
τ=0

∂E(t − Nc + 1, t)
∂wi(t − τ)

for on-line training (4.6a)

and

�wi = −µ

T∑
τ=0

∂E(0, T)

∂wi(T − τ)
for batch training. (4.6b)

4.2 Cost Function Gradient Computation by SFGs. Let us consider the
SFG GS obtained by a cascade connection of the SFG GN of the system to
be adapted and the SFG that implements the cost function J (named GJ in
the following) (see Figure 4 for an example). The SFG GJ has as inputs the
outputs of the adaptable system yk and the targets dk, while the value of J
is its unique output. Obviously GJ can contain the same kind of operators
as GN: delays, nonlinearities, parameters to be adapted (e.g., for regulariza-



1914 P. Campolucci, A. Uncini, and F. Piazza

Figure 4: (a) SFG GS. The system SFG GN in cascade with the error calculation
SFG GJ with J = E(t − 3, t). sqr(x) means x2, and dj j = 1, . . . , r are the desired
outputs. (b) Its adjoint Ĝ(a)

S , that is, Ĝ(a)
J in cascade with Ĝ(a)

N .

tion purposes), and feedback. The class of cost functions allowed by this
approach is therefore enlarged with respect to other approaches since the
cost expression can have memory and be recursive. Although some appli-
cations would require very complex cost functions, the SFG approach can
easily handle them.

Signal-Flow-Graph Approach to On-line Gradient Calculation 1915

Using the adjoint network Ĝ(a)
S of the new SFG GS, it is easy to calculate

the sensitivities of the output with respect to the system parameters (see
equations 3.5 and 3.6). Since the output yk (k = 1) of GS is the cost function
J, combining equation 4.2 with 3.5 or 3.6 and truncating the past history to
h steps (on-line learning) it holds:



∂ J(t)
∂wi

=
h−1∑
τ=0

v̂i(τ )xi(t − τ) on-line

∂ J
∂wi

=
T∑

τ=0

v̂i(τ )xi(T − τ) batch

(4.7a)

(4.7b)




∂ J(t)
∂αi

=
h−1∑
τ=0

v̂i(τ )g′
i(t − τ) on-line

∂ J
∂αi

=
T∑

τ=0

v̂i(τ )g′
i(T − τ) batch.

(4.8a)

(4.8b)

Equations 4.7 and 4.8 hold for any cost function J that can be described by
an SFG. In the particular case when J is chosen to be a standard MSE cost
function, we show that the explicit implementation of GJ can be avoided
since the involved derivatives can be analytically derived.

For on-line learning, using the instantaneous squared error J = e2(t) the
input-output relationship of GJ is given by equation 4.4; thus,

∂e2(t)
∂yk(t − τ)

=
{−2ek(t), τ = 0

0, τ > 0 , k = 1, . . . , r. (4.9)

Using equations 3.4 and 4.9 and considering the output yk of GN as an inter-
nal signal vi, we can explicitly compute the outputs of the adjoint network
Ĝ(a)

J

ŷk(τ ) = ∂e2(t)
∂yk(t − τ)

=
{−2ek(t), τ = 0

0, τ > 0 , k = 1, . . . , r. (4.10)

Such outputs can be used as the inputs of Ĝ(a)
N . Therefore if the signal, equa-

tion 4.10, feeds the network Ĝ(a)
N instead of equation 3.3, the explicit use of

Ĝ(a)
J can be avoided.

If J = E(t − Nc + 1, t) is used, then equation 4.10 generalizes to the
following (see Figure 4):

ŷk(τ ) = ∂E(t − Nc + 1, t)
∂yk(t − τ)

=
{−2ek(t − τ), τ ≤ Nc − 1

0, τ ≥ Nc
, k=1, . . . , r. (4.11)



1916 P. Campolucci, A. Uncini, and F. Piazza

Figure 5: (a) SFG GS, that is, the system SFG GN in cascade with the error cal-
culation SFG GJ with J = E(0, t), sqr(x) means x2, dj j = 1, . . . , r are the desired
outputs; (b) its adjoint Ĝ(a)

S , that is, Ĝ(a)
J in cascade with Ĝ(a)

N . The feedback in (a)
sums the error terms from the initial instant. The feedback in (b) injects into the
SFG’s left side a constant value equal to 1 for all τ .

When batch learning is involved, that is, when J = E(0, T), the following
equation has to be used instead of 4.10 or 4.11:

ŷk(τ )= ∂E(0, T)

∂yk(T − τ)
= − 2ek(T − τ), k=1, . . . , r, τ =0, 1, . . . , T. (4.12)

Note that the parameter variations computed by the summation of all gradi-
ent terms in [0, T] are the same as those obtained by BPTT (Wan & Beaufays,
1996) (see Figure 5).

Thus, for standard MSE cost functions, the derivative calculation can be
performed considering GN and Ĝ(a)

N only, but using either equation 4.10,
4.11, or 4.12 as inputs for Ĝ(a)

N instead of equation 3.3.

Signal-Flow-Graph Approach to On-line Gradient Calculation 1917

Srinivasan et al. (1994) derive a theorem that substantially states what
is expressed in equation 4.7 when J = e2(t); however, such a theorem
has been proved only for a neural network with a particular structure
and by a completely different and very specific approach, whereas the
method presented here is very general, including any NN as a special
case.

In the following, we call the resulting algorithm BC(h) (backward com-
putation), where h is the truncation parameter, or BC for a short notation or
the batch case.

4.3 Detailed Steps of the BC Procedure. To derive the BC algorithm for
training an arbitrary SFG GN using an MSE cost function, the adjoint SFG
Ĝ(a)

N must be drawn by reversing the graph and applying the transformation
of Table 1.

On-Line Learning. Choosing J = E(t−Nc +1, t), then the following steps
have to be performed for each time instant t:

1. The system SFG GN is computed one time step forward, storing in
memory the internal states for the last h time steps.

2. The adjoint SFG Ĝ(a)
N is reset (setting null initial conditions for the

delays).

3. Ĝ(a)
N is computed for τ = 0, 1, . . . , h − 1 with the input given by equa-

tion 4.11 computing the terms of summations 4.7a and 4.8a.

4. The parameters wj and αj are adapted by equation 4.1.

Batch Learning. Choosing J = ∑T
t=0 e2(t), then the procedure is simpler.

For each epoch:

1. The system SFG GN is computed, storing its internal states from time
t = 0 up to time T.

2. The adjoint SFG Ĝ(a)
N is reset.

3. Ĝ(a)
N is evaluated for τ = 0 up to T, with t = T (see the appendix,

accumulating the terms needed by equations 4.7b and 4.8b).

4. The parameters wj and αj are adapted by equation 4.1.

However, not all the variables of the adjoint SFG have to be computed—
only the initial variables of the branches containing adaptable parame-
ters since they must be used in equations 4.7 and 4.8. It must be stressed
that the delay operator of the adjoint SFG delays the τ and not the t in-
dex.

When the MSE is considered, the batch mode BC learning method cor-
responds to batch BPTT and Wan and Beaufays’ method (1996), while the



1918 P. Campolucci, A. Uncini, and F. Piazza

Figure 6: (a) SFG representing a recurrent neuron. (b) Its adjoint.

on-line mode BC procedure corresponds to truncated BPTT (Williams &
Peng, 1990).

If the desired cost function J is not a conventional MSE, then the cost func-
tion SFG GJ must be designed and connected in cascade with the network
SFG, giving the overall SFG GS , whose adjoint SFG Ĝ(a)

S must be drawn
by reversing the graph and applying the transformation of Table 1. In the
previous steps of the BC procedures, now GS must be considered instead of
GN and Ĝ(a)

S instead of Ĝ(a)
N while the input of the adjoint SFG Ĝ(a)

S is given
by equation 3.3 instead of 4.10, 4.11, or 4.12.

4.4 Example of Application of the BC Algorithm. As an example, a
very simple SFG, a recurrent neuron with two adaptable parameters, is
considered (see Figure 6a). The equations of the BC algorithm will be de-
tailed to make the method clear and to show the relationship with truncated
BPTT(h) (Williams & Peng, 1990) in on-line mode and with BPTT in batch
mode.

The equations of the forward phase of the system can be written looking
at Figure 6a. Let us assume the following order of the branches: for the two
weights and the nonlinearity operator, the branch index is the subindex
shown in the figure, and for the delay operator it is equal to three. Since the
system is single-input, single-output (SISO), the u and y variables do not

Signal-Flow-Graph Approach to On-line Gradient Calculation 1919

need any index:

s(t) �= x2(t) = w1(t)u(t) + w4(t)y(t − 1) (4.13)

y(t) = f2(s(t)). (4.14)

4.4.1 On-line Case. For the simplest case J = e2(t) = (d(t) − y(t))2, ac-
cording to equation 4.10, the input of the corresponding adjoint SFG (see
Figure 6b) must be:

ŷ(τ ) =
{−2e(t), τ = 0

0, τ > 0 . (4.15)

From the adjoint SFG, it results in

v̂1(τ ) = v̂4(τ )

= f ′
2(s(t − τ))

(
ŷ(τ ) +

{
ŵ4(τ − 1)v̂4(τ − 1), τ > 0
0, τ = 0

)
, (4.16)

where (see Table 1)

ŵ4(τ − 1) = w4(t − τ + 1). (4.17)

According to equations 3.5 and 4.3, the weights can be updated using the
following two equations:

�w1(t) = µ

h−1∑
τ=0

δ(t − τ)u(t − τ) (4.18)

�w4(t) = µ

h−1∑
τ=0

δ(t − τ)y(t − τ − 1), (4.19)

where

δ(t − τ)
�= − ∂e2(t)

∂s(t − τ)
= − ∂e2(t)

∂v1(t − τ)
= −v̂1(τ ). (4.20)

It can be easily seen that these equations do indeed correspond to truncated
BPTT(h), since the quantity δ is simply the usual δ of truncated BPTT. Note
that here a weight buffer has to be used as stated by the theory, while
sometimes in the literature only the current weights are used to obtain a
simpler approximated implementation (Williams & Peng, 1990).

It is worth noting that in spite of the simplicity of the system (a single
recurrent neuron), the backward equations are not easy to derive by chain
rule; in fact, forward (recursive) equations are usually proposed for adap-
tation.



1920 P. Campolucci, A. Uncini, and F. Piazza

4.4.2 Batch Case. The graph is computed for t = 0, . . . , T saving the
internal states, without any evaluation of the adjoint SFG. The weight time
index can be neglected since the weights are now constant.

In this case, the MSE over the entire epoch is taken, J = ∑T
t=0 e2(t); there-

fore, the input of the adjoint SFG (see Figure 6b) must be, according to
equation 4.12:

ŷ(τ ) = −2e(T − τ), τ = 0, 1, . . . , T (4.21)

From the adjoint SFG, remembering that t = T, it results in

v̂1(τ ) = v̂4(τ ) = f ′
2(s(T − τ))

(
ŷ(τ ) +

{
ŵ4v̂4(τ − 1), τ > 0
0, τ = 0

)
, (4.22)

where ŵ4 = w4.
Therefore the weights can be updated according to the following two

equations:

�w1 = µ

T∑
τ=0

δ(T − τ)u(T − τ) (4.23)

�w4 = µ

T∑
τ=0

δ(T − τ)y(T − τ − 1) (4.24)

where

δ(T − τ)
�= − ∂ J

∂s(T − τ)
= − ∂ J

∂v1(T − τ)
= −v̂1(τ ). (4.25)

It is easy to see that these equations correspond to BPTT, since the quantity
δ is simply the usual δ of BPTT.

4.5 Complexity Analysis. The complexity of the proposed gradient
computation is very low, since it linearly increases with the number of adapt-
able parameters. In particular, since the adjoint graph has the same topology
as the original one, the complexity of its computation is about the same; in
practice, it is lower, since not all the variables of the adjoint graph have to
be computed, as stated in section 4.3. For on-line learning, the adjoint graph
must be evaluated h times for each time step; therefore, the number of op-
erations for the computation of the gradient terms with respect to all the
parameters is roughly (in practice it is lower) h times the number of opera-
tions of the forward phase, plus the computation needed by equations 4.7
and 4.8 for each time step (whose complexity linearly increases with h and
the number of parameters).

Signal-Flow-Graph Approach to On-line Gradient Calculation 1921

4.5.1 Fully Recurrent Neural Networks. For the simple case of a fully re-
current, single-layer, single-delay neural network composed of n neurons,
the computational complexity is O(n2) operations per time step for batch
BC or O(n2h) for on-line BC compared with O(n4) for RTRL (Williams and
Zipser, 1989). The memory requirement is O(nT) for batch BC or O(nh) for
on-line BC, and O(n3) for RTRL. Therefore, as far as computational com-
plexity is concerned, in batch mode, BC is significantly simpler than RTRL,
whereas in on-line mode, the complexity and also the memory requirement
ratios depend on n2/h. However in many practical cases, n2 is large com-
pared to h, and therefore RTRL will be more complex than on-line BC.

4.5.2 Locally Recurrent Neural Networks. For a complex architecture such
as a locally recurrent layered network, a mathematical evaluation of com-
plexity can be carried out by computing the number of multiplications and
additions for one iteration of the on-line learning (i.e., for each input sam-
ple). Results for on-line BC are reported in the significant special case of a
two-layer MLP with IIR temporal filter synapses (IIR-MLP) (Tsoi & Back,
1994; Campolucci et al., 1999) with bias and moving average (MA) and auto
regressive (AR) orders (L(l) and I(l), respectively), depending only on the
layer index l.

The number of additions and multiplications is, respectively:

N2 + h
[
N1N0(2I(1) + L(1)) + 2N2N1(I(2) + L(2)) − N2(N1 − 1) + N1

]
,

N2 + h
[
N1N0(2I(1) + L(1) + 1) + 2N2N1(I(2) + L(2)) + N1(N2 + 1)

]

where Ni is the number of neurons of layer ith (i = 0 corresponds to the
input layer). These numbers must be added to the number of operations of
the forward phase, which should always be performed before the backward
phase, N1N0(L(1)+I(1))+N2N1(L(2)+I(2)), that is, the same for both addition
and multiplication.

5 Conclusion

We have presented a signal-flow-graph approach that allows an easy on-
line computation of the gradient terms needed in sensitivity analysis and
learning of nonlinear dynamic adaptive systems represented by SFG, even
if their structure includes feedback (of any kind, even nested) or time de-
lays. This method bypasses the complex chain rule derivative expansion
traditionally needed to derive the gradient equations.

The gradient information obtained in this way can be useful for circuit
optimization by output sensitivity minimization or for gradient-based train-
ing algorithms, such as conjugate gradient or other techniques. This method
should allow the development of computer-aided design software by which



1922 P. Campolucci, A. Uncini, and F. Piazza

Figure 7: (a) The perturbation introduced in the original SFG. (b) The corre-
sponding node in the adjoint SFG.

an operator could define an architecture of a system to be adapted or a cir-
cuit whose sensitivity must be computed, leaving the software the hard task
of finding and implementing the needed gradient calculation algorithm. We
have easily developed this software in a very general version.

This work is related to previous results in different fields and provides
an elegant analogy with the sensitivity analysis of analog networks by the
adjoint network technique obtained applying Tellegen’s theorem which in
that case relates voltages and currents of the network (Director & Rohrer,
1969).

Appendix: Proof of the Adjoint SFG Method

Let us consider a nonlinear dynamical system described by an SFG with the
notation defined in section 2. Starting at time 0 and letting the system run
up to time t we obtain the signals uj(t), yj(t), xj(t), and vj(t).

Now let us repeat the same process but introducing at time t−τ a pertur-
bation ε to a specific node of the graph (see Figure 7a). This is equivalent to
considering a system with m + 1 inputs, one more than the original system,
where the input (m + 1)th is um+1(t) = u′(t) where u′(t) is defined such as

u′(t − φ) =
{

0, φ �= τ

ε, φ = τ
.

Therefore, at time t, all the variables uj(t), yj(t), xj(t), and vj(t) will be changed
to uj(t) + �uj(t), yj(t) + �yj(t), xj(t) + �xj(t), and vj(t) + �vj(t). Obviously it
holds that �u′(t) = u′(t), ∀t.

Let ûj, ŷj, x̂j, v̂j, and ûm+1(t) = û′(t) be the corresponding variables asso-
ciated with the branches of a generic reversed SFG ĜN of the original graph

Signal-Flow-Graph Approach to On-line Gradient Calculation 1923

GN; applying theorem 1 with ε = 0 (no perturbation), it follows that

r∑
j=1

ŷj(t) ∗ yj(t) +
q∑

j=1

x̂j(t) ∗ xj(t) =
m+1∑
j=1

ûj(t) ∗ uj(t)

+
q∑

j=1

v̂j(t) ∗ vj(t), (A.1)

while when ε �= 0 (with perturbation), the same equation rewrites as

r∑
j=1

ŷj(t) ∗ (yj(t) + �yj(t)) +
q∑

j=1

x̂j(t) ∗ (xj(t) + �xj(t))

=
m+1∑
j=1

ûj(t) ∗ (uj(t) + �uj(t)) +
q∑

j=1

v̂j(t) ∗ (vj(t) + �vj(t)). (A.2)

Since the convolution is a linear operator, subtracting equation A.1 from A.2
results in

r∑
j=1

ŷj(t) ∗ �yj(t) +
q∑

j=1

x̂j(t) ∗ �xj(t) =
m+1∑
j=1

ûj(t) ∗ �uj(t)

+
q∑

j=1

v̂j(t) ∗ �vj(t). (A.3)

With regard to the input branches ŷj of the SFG ĜN, it is possible to choose

ŷj(τ ) =




0 ∀τ if j �= k{
1, τ = 0
0, τ > 0 if j = k

j = 1, . . . , r (A.4)

in order to obtain:

r∑
j=1

ŷj(t) ∗ �yj(t) = �yk(t), (A.5)

where yk is the output of which we need to compute the gradient.
Since the inputs uj j = 1, . . . , m of GN are obviously not dependent on

the perturbation ε, it holds that

�uj(t) = 0 ∀t, j = 1, . . . , m; (A.6)



1924 P. Campolucci, A. Uncini, and F. Piazza

therefore,

m+1∑
j=1

ûj(t) ∗ �uj(t) = ûm+1(t) ∗ �um+1(t) = û′(t) ∗ �u′(t)

=
t∑

φ=0

û′(φ)�u′(t − φ) = û′(τ )�u′(t − τ). (A.7)

Now we use the degrees of freedom given by the definition of reversed
graph to choose the f -branch operators in ĜN such that it holds:

v̂j(t) ∗ �vj(t) = x̂j(t) ∗ �xj(t) j = 1, . . . , q, (A.8)

and equation A.3 can be greatly simplified. In this way, the adjoint graph
Ĝ(a)

N will be obtained.
For delay branches:

vj(t) = q−1xj(t) ⇒ �vj(t) = �xj(t − 1) = q−1�xj(t). (A.9)

Let us choose the relationship between the branch variables in ĜN as

x̂j(τ ) = q−1v̂j(τ ), (A.10)

where τ is the time index of the adjoint SFG and t the time index of the
original SFG; the same notation will be used in the following.

Since �xj(t − φ) and �vj(t − φ) are zero, if φ > τ , since the system is
causal, and the initial conditions of ĜN are set to zero, that is

x̂j(0) = 0, (A.11)

it follows that

v̂j(t) ∗ �vj(t) =
t∑

φ=0

v̂j(φ)�vj(t − φ) =
τ∑

φ=0

v̂j(φ)�vj(t − φ)

=
τ∑

φ=0

x̂j(φ + 1)�xj(t − φ − 1) =
τ+1∑
s=1

x̂j(s)�xj(t − s)

=
τ+1∑
s=0

x̂j(s)�xj(t − s) =
τ∑

s=0

x̂j(s)�xj(t − s)

= x̂j(t) ∗ �xj(t). (A.12)

For static branches:

vj(t) = gj(xj(t), αj(t), t). (A.13)

Signal-Flow-Graph Approach to On-line Gradient Calculation 1925

Let us choose the relationship between the branch variables x̂j and v̂j in GN
as

x̂j(τ ) = v̂j(τ )
∂gj

∂xj

∣∣∣∣
xj(t−τ),αj(t−τ),t−τ

�= v̂j(τ )g′
j(t − τ), (A.14)

where g′
j(.) is implicitly defined as in equation 3.2. By differentiating

�vj(s) =
{

(∂gj/∂xj)
∣∣
xj(s),αj(s),s

�xj(s) = g′
j(s)�xj(s), s ≥ t − τ

0, s < t − τ
(A.15)

v̂j(t) ∗ �vj(t) =
t∑

φ=0

v̂j(φ)�vj(t − φ)

=
τ∑

φ=0

v̂j(φ)g′
j(t − φ)�xj(t − φ) = x̂j(t) ∗ �xj(t). (A.16)

Very interesting particular cases of equation A.14 for nonlinear adaptive
filters or neural networks are:{

x̂j(τ )=wj(t − τ), v̂j(τ ) for a weight branch

x̂j(τ )= f ′
j (xj(t − τ)v̂j(τ ) for a nonlinear branch.

(A.17)

(A.18)

Equations A.17 and A.18 correspond to the branches defined in equation 2.3,
respectively.

We have completely defined the reversed SFG ĜN, which is now called
adjoint signal-flow-graph Ĝ(a)

N . Therefore the adjoint SFG Ĝ(a)
N is defined as a

reversed SFG ĜN with the additional conditions given by equations A.10
and A.11 for delay branches, A.17 and A.18 (or A.14) for static branches,
and A.4 for the ŷ-branches. These definitions are summarized in Table 1.

Combining equations A.3, A.5, A.7, and A.8 results in

�yk(t) = û′(τ )�u′(t − τ). (A.19)

Since û′(τ ) obviously does not depend on ε, it holds that

∂yk(t)
∂u′(t − τ)

= lim
ε→0

�yk(t)
�u′(t − τ)

= û′(τ ). (A.20)

From Figure 7a, we observe that u′ and the ith branch comes into the same
node; remembering that a node performs a summation, it holds that

∂yk(t)
∂u′(t − τ)

= ∂yk(t)
∂vi(t − τ)

, (A.21)



1926 P. Campolucci, A. Uncini, and F. Piazza

and from Figure 7b that û′(τ ) = v̂i(τ ); therefore

∂yk(t)
∂vi(t − τ)

= v̂i(τ ). (A.22)

It is important to note that for batch learning, equation A.22 is evaluated
only for t = T and, therefore the adjoint branches defined in Table 1 are
considered with t = T, where T is the final instant of the epoch.

References

Almeida, L. B. (1987). A learning rule for asynchronous perceptrons with feed-
back in combinatorial environment. In Proc. Int. Conf. on Neural Networks
(Vol. 2, pp. 609–618).

Back, A. D., & Tsoi, A. C. (1991). FIR and IIR synapses, a new neural network
architecture for time series modelling. Neural Computation, 3, 375–385.

Beaufays, F., & Wan, E. (1994). Relating real-time backpropagation and
backpropagation-through-time: An application of flow graph interreciproc-
ity. Neural Computation, 6, 296–306.

Campolucci, P. (1998). A circuit theory approach to recurrent neural network ar-
chitectures and learning methods. Doctoral dissertation in English, Univer-
sity of Bologna, Italy. PDF available online at http://nnsp.eealab.unian.it/
campolucci P or requested from campoluc@tiscalinet.it.

Campolucci, P., Marchegiani, A., Uncini, A., & Piazza, F. (1997). Signal-flow-
graph derivation of on-line gradient learning algorithms. In Proc. ICNN-97,
IEEE Int. Conference on Neural Networks (Houston, TX).

Campolucci, P., Piazza, F., & Uncini, A. (1995). On-line learning algorithms for
neural networks with IIR synapses. In Proc. IEEE International Conference of
Neural Networks (Perth).

Campolucci, P., Uncini, A., & Piazza, F. (1998). Dynamical systems learning by
a circuit theoretic approach. Proc. ISCAS-98, IEEE Int. Symposium on Circuits
and Systems.

Campolucci, P., Uncini, A., Piazza, F., & Rao, B. D. (1999). On-line learning algo-
rithms for locally recurrent neural networks. IEEE Trans. on Neural Networks,
10, 253–271.

Director, S. W., & Rohrer, R. A. (1969). The generalized adjoint network and
network sensitivities. IEEE Trans. on Circuit Theory, CT-16, 318–323.

Gherrity, M. (1989). A learning algorithm for analog, fully recurrent neural net-
works. In Proc. Int. Joint Conference Neural Networks, (Vol. 1, pp. 643–644).

Haykin, S. (1994). Neural networks: A comprehensive foundation. New York:
IEEE Press–Macmillan.

Horne, B. G., & Giles, C. L. (1995). An experimental comparison of recurrent
neural networks. In G. Tasauro, D. Touretzky, & T. Leen (Eds.), Advances in
neural information processing systems, 7 Cambridge, MA: MIT Press.

Lee, A. Y. (1974). Signal flow graphs—Computer-aided system analysis and sen-
sitivity calculations. IEEE Transactions on Circuits and Systems, cas-21, 209–216.

Martinelli, G., & Perfetti, R. (1991). Circuit theoretic approach to the backpropa-
gation learning algorithm. Proc. IEEE Int. Symposium on Circuits and Systems.

Signal-Flow-Graph Approach to On-line Gradient Calculation 1927

Mason, S. J. (1953). Feedback theory—Some properties of signal-flow graphs.
Proc. Institute of Radio Engineers, 41, 1144–1156.

Mason, S. J. (1956). Feedback theory—Further properties of signal-flow graphs.
Proc. Institute of Radio Engineers, 44, 920–926.

Narendra, K. S., Parthasarathy, K. (1991). Gradient methods for the optimiza-
tion of dynamical systems containing neural networks. IEEE Trans. on Neural
Networks, 2, 252–262.

Nerrand, O., Roussel-Ragot, P., Personnaz, L., Dreyfus, G., & Marcos, S. (1993).
Neural networks and nonlinear adaptive filtering: Unifying concepts and
new algorithms. Neural Computation, 5 165–199.

Oppenheim, A. V., & Schafer, R. W. (1975). Digital signal processing. Englewood
Cliffs, NJ: Prentice Hall.

Osowski, S. (1994). Signal flow graphs and neural networks. Biological Cybernet-
ics, 70, 387–395.

Pearlmutter, B. A. (1995). Gradient calculations for dynamic recurrent neural
networks: A survey. IEEE Trans. on Neural Networks, 6, 1212–1228.

Penfield, P., Spence, R., & Duiker, S. (1970). Tellegen’s theorem and electrical
networks. Cambridge, MA: MIT Press.

Srinivasan, B., Prasad, U. R., & Rao, N. J. (1994). Backpropagation through ad-
joints for the identification of non linear dynamic systems using recurrent
neural models. IEEE Trans. on Neural Networks, 5, 213–228.

Tellegen, B. D. H. (1952). A general network theorem, with applications. Philips
Res. Rep., 7, 259–269.

Tsoi, A. C., & Back, A. D. (1994). Locally recurrent globally feedforward net-
works: A critical review of architectures. IEEE Transactions on Neural Networks,
5, 229–239.

Uncini, A., Vecci, L., Campolucci, P., & Piazza, F. (1999). Complex-valued neu-
ral networks with adaptive spline activation function for digital radio links
nonlinear equalization. IEEE Transactions on Signal Processing, 47, 505–514.

Wan, E. A., & Beaufays, F. (1996). Diagrammatic derivation of gradient algo-
rithms for neural networks. Neural Computation, 8, 182–201.

Wan, E. A., & Beaufays, F. (1998). Diagrammatic methods for deriving and re-
lating temporal neural networks algorithms. In M. Gori & C. L. Giles (Eds.),
Adaptive processing of sequences and data structures. Berlin: Springer-Verlag.

Werbos, P. J. (1990). Backpropagation through time: What it does and how to do
it. Proc. of IEEE, 78, 1550–1560.

Williams, R. J., & Peng, J. (1990). An efficient gradient-based algorithm for on
line training of recurrent network trajectories. Neural Computation, 2, 490–501.

Williams, R. J., & Zipser, D. (1989). A learning algorithm for continually running
fully recurrent neural networks. Neural Computation, 1, 270–280.

Williams, R. J., & Zipser, D. (1994). Gradient-based learning algorithms for
recurrent networks and their computational complexity. In Y. Chauvin &
D. E. Rumelhart (Eds.), Backpropagation: Theory, architectures and applications
(pp. 433–486). Hillsdale, NJ: Erlbaum.

Received July 7, 1997; accepted July 22, 1999.


