NEURAL BLIND SEPARATION OF COMPLEX SOURCES BY EXTENDED APEX ALGORITHM (EAPEX)

Simone Fiori, Aurelio Uncini, and Francesco Piazza

Dept. Electronics and Automatics – University of Ancona (Italy)
E-mail:simone@eealab.unian.it

ABSTRACT

Blind Source Separation by non-classical (non-quadratic) neural Principal Component Analysis has been investigated by several papers over the recent years, even if particular attention has been paid to the real-valued sources case. The aim of this work is to present an extension of the Kung-Diamantaras' APEX learning rule to non-quadratic complex optimization, and to show the new approach allows blind separation of complex-valued source signals from their linear mixtures.

1. INTRODUCTION

Blind Source Separation (BSS) by Independent Component Analysis (ICA) of complex-valued data [2, 4, 10] is a meaningful problem that has been investigated in a very few papers, while much more attention has been paid to develop several different algorithms for performing BSS-ICA of realvalued data. Among others, those methods based on nonlinear extensions of Principal Component Analysis (PCA) have raised much interest in the Neural Network community (see for example [6, 9] and references therein). It has been proven by many papers that adding non-linearity to linear PCA neural networks makes them able to improve the independence of their outputs so as to allow blind separation of independent sources [6, 9]. Recently, some attempts have been made in order to extend the best known PCA algorithms to the complex case. In [1] Chen and Hou presented an heuristic complex version of the well-known APEX algorithm [5], in [3] De Castro et al. gave an heuristic complex extension of the GHA algorithm [11] successively generalized to the non-linear case by Fiori and Piazza [8], while in [7] Fiori and Uncini proposed a formal derivation of a large class of complex PCA neural algorithms containing, as a special case, the one found in [1].

In this paper we formally derive a new learning algorithm as a non-linear complex generalization of APEX, and discuss the choice of the non-linearity under the theoretical framework proposed by Sudjianto and Hassoun [12] ex-

This research was supported by the Italian MURST.

tended to the complex case. Then we show how a particular non-linearity, called Rayleigh function, allows the neural network to separate out mixed independent complex-valued source signals.

2. EXTENDED APEX ALGORITHM (EAPEX)

Consider the complex-weighted neural network with input $\mathbf{x} \in \mathcal{C}^p$ and output $\mathbf{y} \in \mathcal{C}^m$, with $m \leq p$, described by the following relationships:

$$z_k = \mathbf{w}_k^{\#} \mathbf{x} , \ y_k = z_k + \mathbf{h}_k^{\#} \mathbf{y} , \tag{1}$$

where $\mathbf{z} \in \mathcal{C}^m$, vectors $\mathbf{w}_k \in \mathcal{C}^p$ represent the network's direct connections, vectors $\mathbf{h}_k \in \mathcal{C}^p$ represent the network's lateral connections, and superscript $^{\#}$ denotes conjugate transpose. In the following $E_{\mathbf{x}}[\cdot]$ denote mathematical expectation with respect to \mathbf{x} .

In [7] it has been shown that it is possible to define a pair (J, C) of objective functions as follows:

$$J(\mathbf{w}_k) \stackrel{\text{def}}{=} \sum_{k=1}^m P_k(\mathbf{w}_k) + \frac{1}{2} \sum_{k=1}^m \lambda_k (1 - \mathbf{w}_k^{\#} \mathbf{w}_k) ,$$

$$C(\mathbf{h}_k) \stackrel{\text{def}}{=} \frac{1}{2} \sum_{k=1}^m E_{\mathbf{x}}[|y_k|^2] + \sum_{k=1}^m E_{\mathbf{x}}[\psi_k](\mathbf{h}_k^{\#}\mathbf{h}_k) ,$$

where $P_k = E_{\mathbf{x}}[|y_k|^2]$ and λ_k and $E_{\mathbf{x}}[\psi_k]$ are Lagrange multipliers, such that maximizing J with respect to each \mathbf{w}_k only and simultaneously minimizing C with respect to each \mathbf{h}_k only, gives a set of learning equations allowing the network to perform Principal Component Analysis of incoming complex-valued data.

In this paper we generalize the criterion $J(\mathbf{w}_k)$ by defining instead:

$$P_k \stackrel{\text{def}}{=} E_{\mathbf{x}}[f(|y_k|)], \qquad (2)$$

where $f(u): \mathcal{R}_0^+ \to \mathcal{R}_0^+$ is a function continuously differentiable almost everywhere, non-decreasing with a unique minimum in u=0. In this case we thus have:

$$\frac{\partial J(\mathbf{w}_k)}{\partial \mathbf{w}_k} = E_{\mathbf{x}} \left[f'(|y_k|) \frac{\partial |y_k|}{\partial \mathbf{w}_k} \right] , \qquad (3)$$

while from [7] we know that:

$$\frac{\partial |y_k|^2}{\partial \mathbf{w}_k} = 2\mathbf{x}y_k^* = 2|y_k| \frac{\partial |y_k|}{\partial \mathbf{w}_k} , \tag{4}$$

where superscript * denotes conjugation. Moreover, from [7] we also know that:

$$\frac{\partial |y_k|^2}{\partial \mathbf{h}_k} = 2\mathbf{y}_{[k]} y_k^{\star} , \qquad (5)$$

where $\mathbf{y}_{[k]} \stackrel{\text{def}}{=} [y_1 \ y_2 \cdots y_{k-1} \ 0 \cdots 0]^T$ with k > 1, and $\mathbf{y}_{[1]} \stackrel{\text{def}}{=} [0 \ 0 \cdots 0 \ 0]^T$. Define now $F(u) \stackrel{\text{def}}{=} \frac{f'(u)}{u}$; then we may write:

$$\frac{\partial J(\mathbf{w}_k)}{\partial \mathbf{w}_k} = E_{\mathbf{x}}[F(|y_k|)y_k^{\star}\mathbf{x}] - \lambda_k \mathbf{w}_k,$$

$$\frac{\partial C(\mathbf{h}_k)}{\partial \mathbf{h}_k} = E_{\mathbf{x}}[y_k^{\star}\mathbf{y}_{[k]}] + E_{\mathbf{x}}[\psi_k]\mathbf{h}_k.$$

From optimization theory we know the optimal multipliers λ_k can be found by solving the following equations:

$$\mathbf{w}_k^{\#} \frac{\partial J}{\partial \mathbf{w}_k} = E_{\mathbf{x}}[F(|y_k|)] y_k^{*} z_k] - \lambda_k = 0 ,$$

whose solutions give the optimal gradients:

$$\left(\frac{\partial J(\mathbf{w}_k)}{\partial \mathbf{w}_k}\right)^{\text{opt}} = E_{\mathbf{x}}[F(|y_k|)y_k^{\star}(\mathbf{x} - z_k \mathbf{w}_k)]. \quad (6)$$

Standard Kuhn-Tucker theory shows that it is not possible to find optimal multipliers $E_{\mathbf{x}}[\psi_k]$, instead. Then, by letting weight vectors adapt by means of gradient steepest ascent/descent algorithms, we find the new learning rule:

$$\Delta \mathbf{w}_{k} = \eta \frac{\partial J}{\partial \mathbf{w}_{k}} = \eta E_{\mathbf{x}} [F(|y_{k}|) y_{k}^{*} (\mathbf{x} - z_{k} \mathbf{w}_{k})], (7)$$

$$\Delta \mathbf{h}_{k} = -\eta \frac{\partial C}{\partial \mathbf{h}_{k}} = -\eta E_{\mathbf{x}} [y_{k}^{*} \mathbf{y}_{[k]}] - \eta E_{\mathbf{x}} [\psi_{k}] \mathbf{h}_{k} (8)$$

$$k = 1, 2, \dots, m, \eta > 0,$$

that is referred to as *Extended APEX Algorithm* (EAPEX) in that for $f(u) = \frac{1}{2}u^2$, $\psi_k = |y_k|^2$, as long as $y_k \cong z_k$, and in presence of real valued data, it resembles the APEX learning algorithm by Kung and Diamantaras [5].

In the next Section we discuss a choice of $F(\cdot)$ arising from an interpretation of non-quadratic Hebbian learning due to Sudjianto and Hassoun [12] extended to the complex case.

3. THE SUDJIANTO-HASSOUN INTERPRETATION OF NON-QUADRATIC HEBBIAN LEARNING

In [12], Sudjianto and Hassoun considered the problem of maximizing a criterion $P(\mathbf{w}) \stackrel{\text{def}}{=} E[S^2(\mathbf{w}^T\mathbf{x})]$ subject to

the restriction $\mathbf{w}^T\mathbf{w}=1$, where $y=\mathbf{w}^T\mathbf{x}$ is the output of a single-unit real-weighted neural network and $S(\cdot)$ is a generic saturating sigmoidal function, for instance such that $S(\cdot) \in [-1,+1]$, that is the same problem addressed in Section 2 particularized to m=1. They noted that maximizing the variance of a saturating function of y leads the neuron to prefer configurations \mathbf{w} corresponding to values of S(y) concentrated near the extremes -1 and +1. If the quantity z=S(y) is perceived as a new random variable with probability density function $q_Z(z|\mathbf{w})$, this makes U-shaped the distribution q_Z [12]. The gradient steepest ascent learning rule for the neuron is:

$$\frac{d\mathbf{w}}{dt} = \frac{\partial J}{\partial \mathbf{w}} = (\mathbf{I} - \mathbf{w}\mathbf{w}^T) E_{\mathbf{x}}[\ell(y)\mathbf{x}], \qquad (9)$$

where $\ell(u) \stackrel{\text{def}}{=} 2S'(u)S(u)$. Denote now by $q_Y(y|\bar{\mathbf{w}})$ the probability density function of the random variable y due to a configuration $\bar{\mathbf{w}}$, and with $Q_Y(y|\bar{\mathbf{w}})$ its cumulative distribution function, namely:

$$Q_Y(y|\bar{\mathbf{w}}) \stackrel{\text{def}}{=} \int_{-\infty}^y q_Y(\eta|\bar{\mathbf{w}})d\eta$$
.

Assume then $S(y)=2Q_Y(y|\bar{\mathbf{w}})-1$. In this case it is well known [12] that z will be uniformly distributed within [-1,+1]. The central idea developed by Sudjianto and Hassoun is that the learning rule (9) will converge to a weight vector surely different from $\bar{\mathbf{w}}$, since the rule seeks a U-shaped distribution of z, that is, a distribution that deviates away from a uniform one. If, for instance, $\mathbf{x} \in \mathcal{R}^2$, x_1 has a pdf $q_1(x_1)$ and x_2 has a pdf $q_2(x_2)$ different from q_1 , then choosing $S(y)=2Q_1(y)-1$ makes the rule (9) able to filter the signal x_1 allowing for $y=x_2$ at convergence, and viceversa. In other words, the rule (9) behaves as a *probabilistic filter*.

Consider now the extension of the previous theory to the complex case. Define the cost function:

$$P(\mathbf{w}) \stackrel{\text{def}}{=} E_{\mathbf{x}}[S^2(|y|)]$$
 (10)

In our case we assume:

$$S(|y|) = Q_{|Y|}(|y|) \stackrel{\text{def}}{=} \int_0^{|y|} q(\eta) d\eta ,$$

where $q(\cdot)$ represents a generic probability density function. Clearly this implies $f(u)=S^2(u)$, hence:

$$f'(u) = 2q(u) \int_0^u q(\eta) d\eta . \tag{11}$$

Ultimately it is clear that training each neuron of a linear complex-weighted neural network by means of the learning rule EAPEX with the non-linearity (11) causes the network to learn connection strengths that filter the outputs so that

the probability density function of the output moduli $|y_k|$ deviates away from $q(\cdot)$. In the next section it will be made clear how this principle could be employed for separating out independent complex signals from their linear mixtures.

4. APPLICATION TO BLIND COMPLEX SOURCE SEPARATION

Suppose input x contains a complex linear mixture of statistically independent signals [10], and that one of these signals is a Gaussian noise of the form v=r+is, where both r and s are zero-mean Gaussian random variables of variance σ^2 . Then it is known that the modulus |v| follows the Rayleigh distribution:

$$q_{\rm R}(|v|) = \frac{|v|}{\sigma^2} \exp\left(-\frac{|v|^2}{2\sigma^2}\right).$$

Then by formula (11) we find:

$$f'_{\rm R}(u) = \frac{2u}{\sigma^2} \left[\exp\left(-\frac{u^2}{2\sigma^2}\right) - \exp\left(-\frac{u^2}{\sigma^2}\right) \right] \Gamma(u) ,$$

where $\Gamma(u)$ is the unitary step. Figure 1 depicts the Rayleigh non-linearity $F_{\rm R}(u)=f'_{\rm R}(u)/u$ for a unitary noise power. In this case it is possible to express the cumulative distribu-

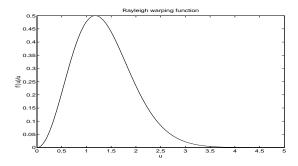


Figure 1: Rayleigh warping function for $\sigma^2 = 1$.

tion function in closed form simply as:

$$Q_{\rm R}(u) = 1 - \exp\left(-\frac{u^2}{2\sigma^2}\right) .$$

By using in the EAPEX algorithm the function $F_{\rm R}(u)$ it is then possible to separate out independent complex-valued signals mixed by a unitary operator. The general problem where generic linear mixtures are concerned can be solved by pre-whitening the data [2, 10].

5. EXPERIMENTAL RESULTS

As a numerical example, suppose input $x \in C^4$ is formed by a linear mixture of four independent signals arranged in

a vector $\mathbf{s} \in \mathcal{C}^4$. Signal s_1 is QAM4 and s_2 is QAM16, both with small Gaussian phase deviation; signal s_3 is PSK, and s_4 is a Gaussian noise of variance $\sigma^2 = 0.5$. The mixture is computed as $\mathbf{x} = \mathbf{M}\mathbf{s}$, where \mathbf{M} is a randomly generated 4×4 complex matrix. The first row of Figure 2 depicts the independent signals while second row shows the obtained four mixtures.

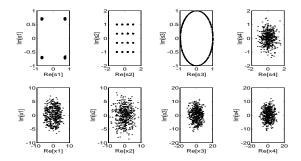


Figure 2: The four independent signals and the four mixtures of them.

By means of the Sudjianto-Hassoun principle, a linear neural network with four inputs and four outputs, trained by the learning rule EAPEX with the Rayleigh non-linearity, should be able to recover the independent signals except for a phase shift and a random permutation [2] after mixture prewhitening. Simulation results are shown in Figure 3: The first row depicts whitened mixtures obtained by means of the well-known Laheld-Cardoso's standardizing algorithm [10] in its stabilized version:

$$\Delta \mathbf{U} = \gamma \frac{\mathbf{U}(\mathbf{I} - \mathbf{v}\mathbf{v}^{\#})}{|1 + \gamma \mathbf{v}^{\#}\mathbf{v}|}, \ \mathbf{v} = \mathbf{U}^{\#}\mathbf{y},$$

with $\gamma=0.0005$. The second row shows the last 100 outputs of the network trained by EAPEX on the prewhitened data ${\bf v}$, with the choice $\psi_k \stackrel{\rm def}{=} |y_k|$ (for a discussion on the possible choices of the ψ_k 's see [7]), $\eta=0.005$, $\sigma^2=0.5$ and ${\bf W}(0)={\bf I}$. Figure 4 shows the histograms of the

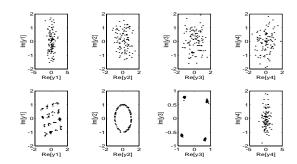


Figure 3: Network's output after learning by rule EAPEX.

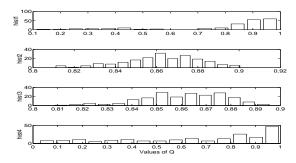


Figure 4: Functions $Q_{\mathbf{R}}(\cdot)$ histograms.

last 200 samples of $Q_{\mathbf{R}}(|y_1|), \ldots, Q_{\mathbf{R}}(|y_4|)$, while Figure 5 depicts the residual interference defined on the basis of the separation product $\mathbf{\Pi} \stackrel{\text{def}}{=} \mathbf{W}^{\#}\mathbf{U}^{\#}\mathbf{M}$ as the sum of the 12 smallest numbers among $|\Pi_{ij}|^2$ divided by the sum of the 4 largest numbers among $|\Pi_{ij}|^2$.

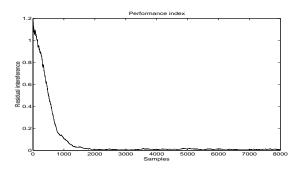


Figure 5: Residual intereference.

Simulation results show that the network is able to recover the independent signals. The histograms $Q_{\mathbf{R}}(|y_1|)$, $Q_{\mathbf{R}}(|y_2|)$ and $Q_{\mathbf{R}}(|y_3|)$ are in good accordance with the signals in Figure 3, while the presence of a peak in +1 on the histogram of $Q_{\mathbf{R}}(|y_4|)$ confirms that the fourth neuron cannot separate out the Gaussian noise and its output contains a mixture of the other source signals, as expected.

6. CONCLUSION

Blind separation by extended Hebbian algorithm has become a fruitful research field, as already pointed out also by Hyvärinen and Oja [6] who have recently proposed an algorithm for blind separation of real-valued signals from orthogonal mixtures via linear networks based on non-classical Hebbian learning. In this paper a new adapting rule for linear neural networks as generalization of APEX learning has been presented by using some results of an our previous work [7]. It provides a generalization in that it applies to complex-weighted neural networks and embeds non-linearity

in the classical Hebbian learning. A particular choice of the non-linearity is discussed by recalling the Sudjianto-Hassoun interpretation of non-classical Hebbian learning extended to the complex case.

7. REFERENCES

- [1] Y. CHEN AND C. HOU, High resolution adaptive bearing estimation using a complex-weighted Neural Network, Proc. of IEEE-ICASSP, Vol. II, pp. 317 320, 1992
- [2] P. COMON, Independent Component Analysis, a new concept?, Signal Processing, Vol. 36, pp. 287 – 314, 1994
- [3] M.C.F. DE CASTRO, F.C.C. DE CASTRO, J.N. AMARAL, AND P.R.G. FRANCO, *A Complex Valued Hebbian Learning Algorithm*, Proc. of IEEE-ICNN, pp. 1235 1238, 1998
- [4] G. DESODT AND D. MULLER, *Complex ICA applied* to the separation of radar signals, Proc. of EUSIPCO, Vol. I, pp. 665 668, 1990
- [5] K.I. DIAMANTARAS AND S.-Y. KUNG, Principal Component Neural Networks: Theory and Applications, J. Wiley & Sons, 1996
- [6] A. HYVÄRINEN AND E. OJA, *Independent Component Analysis by general non-linear Hebbian-like rules*, Signal Processing, Vol. 64, No. 3, pp. 301 313, 1998
- [7] S. FIORI AND A. UNCINI, A unified approach to laterally-connected neural networks, Proc. EUSIPCO, Vol. I, pp. 379 382, 1998
- [8] S. FIORI AND F. PIAZZA, Neural blind separation of complex sources by extended Hebbian learning (EGHA), These proceedings
- [9] J. KARHUNEN AND J. JOUTSENSALO, Representation and separation of signals using nonlinear PCA type learning, Neural Networks, Vol. 7, No. 1, pp. 113 – 127, 1994
- [10] B. LAHELD AND J.F. CARDOSO, *Adaptive source separation with uniform performance*, Proc. of EU-SIPCO, Vol. 1, pp. 183 186, 1994
- [11] T.D. SANGER, *Optimal unsupervised learning in a single-layer linear feedforward neural network*, Neural Networks, Vol. 2, pp. 459 473, 1989
- [12] A. SUDJIANTO AND M.H. HASSOUN, *Nonlinear Hebbian rule: A statistical interpretation*, Proc. of IEEE-ICNN, Vol. 2, pp. 1247 1252, 1994