
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 2, MARCH 1999 253

On-Line Learning Algorithms for Locally
Recurrent Neural Networks

Paolo Campolucci,Member, IEEE, Aurelio Uncini, Member, IEEE,
Francesco Piazza,Member, IEEE, Bhaskar D. Rao,Senior Member, IEEE

Abstract—This paper focuses on on-line learning procedures
for locally recurrent neural networks with emphasis on mul-
tilayer perceptron (MLP) with infinite impulse response (IIR)
synapses and its variations which include generalized output and
activation feedback multilayer networks (MLN’s). We propose a
new gradient-based procedure called recursive backpropagation
(RBP) whose on-line version, causal recursive backpropagation
(CRBP), presents some advantages with respect to the other
on-line training methods. The new CRBP algorithm includes
as particular cases backpropagation (BP), temporal backprop-
agation (TBP), backpropagation for sequences (BPS), Back–Tsoi
algorithm among others, thereby providing a unifying view on
gradient calculation techniques for recurrent networks with local
feedback. The only learning method that has been proposed for
locally recurrent networks with no architectural restriction is the
one by Back and Tsoi. The proposed algorithm has better stability
and higher speed of convergence with respect to the Back–Tsoi
algorithm, which is supported by the theoretical development and
confirmed by simulations. The computational complexity of the
CRBP is comparable with that of the Back–Tsoi algorithm, e.g.,
less that a factor of 1.5 for usual architectures and parameter set-
tings. The superior performance of the new algorithm, however,
easily justifies this small increase in computational burden. In
addition, the general paradigms of truncated BPTT and RTRL
are applied to networks with local feedback and compared with
the new CRBP method. The simulations show that CRBP exhibits
similar performances and the detailed analysis of complexity
reveals that CRBP is much simpler and easier to implement, e.g.,
CRBP is local in space and in time while RTRL is not local in
space.

Index Terms—IIR-MLP, locally recurrent neural networks, on-
line learning, recursive backpropagation, system identification,
time-delay neural networks.

I. INTRODUCTION

RECENTLY dynamic recurrent neural networks have been
attracting much attention from the scientific community

(see the special issue of IEEE TRANSACTIONS ON NEURAL

NETWORKS, March 1994, and ofNeurocomputing, June 1997)
because they can be very useful for temporal processing,
e.g., digital signal processing (DSP), system identification and
control, and temporal pattern recognition.

Two main methods exist to provide a static neural network
with dynamic behavior: the insertion of a buffer somewhere in
the network, i.e., implementing an explicit memory of the past

Manuscript received October 28, 1996; revised December 1, 1997 and
October 22, 1998.

P. Campolucci, A. Uncini, and F. Piazza are with the Dipartimento di
Elettronica ed Automatica, Università di Ancona, Ancona, Italy (e-mail:
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Fig. 1. Buffered multilayer perceptron with input buffer.

inputs, or the use of feedback. In both approaches, an arbitrary
input may influence a future output , so that

is not equal to zero for some. In the case of
asymptotic stability this derivative goes to zero whengoes
to infinity. The value of for which the derivative becomes
negligible is calledtemporal depth, whereas the number of
adaptable parameters divided by the temporal depth is called
temporal resolution[32].

The first kind of dynamic network is a buffered multilayer
perceptron (MLP) in which tapped delay lines (TDL’s) of the
inputs are used. The buffer can be applied at the network
inputs only, keeping the network internally static as in buffered
MLP’s [22] (see Fig. 1), or at the input of each neuron as
in MLP with finite impulse response (FIR) filter synapses
[FIR-MLP, see Fig. 3(a)] [3], [8], [11], [22], [37] often called
time-delay neural network (TDNN) [9], [10] and in adaptive
time-delay neural networks [34], [35]. It is well known that
buffered MLP and FIR-MLP can be shown to be theoretically
equivalent [8] since internal buffers can be implemented as
an external one. The problem with implementing FIR-MLP’s
as buffered MLP’s is that first layers sub networks must be
replicated (with shared weights) [8] and so the complexity is
much higher than considering the buffer internal. Therefore
buffered MLP and FIR-MLP are different architectures with
regard to a real implementation. The main disadvantage of
the buffer approach is the limited past history horizon thereby
preventing modeling of arbitrary long time dependencies [20],
[21], [55] between inputs and desired outputs. It is also difficult
to set the length of the buffer given a certain application;
moreover to have sufficient temporal depth, a long buffer, i.e.,
a large number of inputs weights, could be required, usually
with a decrease in generalization performance and an increase
in the overall computational complexity. In other words the
buffer approach with no feedback has the maximum temporal
resolution, at the cost of a low temporal depth.

1045–9227/99$10.00 1999 IEEE
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Fig. 2. Buffered multilayer perceptron with input and output buffers, some-
times called Narendra Parthasarathy or NARX neural network.

Recently a new buffer type called gamma memory has
been proposed by Principeet al. [32], [33], for which the
delay operator, used in conventional TDL’s, is replaced by a
single pole discrete time filter. Gamma memory is a dispersive
delay line with dispersion regulated by an adaptable parameter,
so that it is possible to adaptively trade off temporal depth
with temporal resolution. In addition to these advantages of
temporal depth and resolution characteristics, it is known that
neural networks with feedback have useful dynamic modeling
behavior [40], [41].

The main example of implementation of feedback is the
classical fully recurrent neural network, i.e., a single layer
of neurons fully interconnected with each other [1], [2],
[5], [22], [24], [31], [39], [42], [49], [51], [52], or several
such layers [29]. Such recurrent networks however exhibit
some well known disadvantages: a large structural complexity
( weights are necessary forneurons) [30] and a slow
and difficult training, e.g., [4]. In fact they are very general
architectures which can model a large class of dynamical
systems, but on specific problems simpler dynamic neural
networks which make use of available prior knowledge can
be better [21], [41].

In the past few years, a growing interest has been devoted to
methods which allow introduction of temporal dynamics into
the multilayer neural model. In fact the related architectures
are less complex and easier to train with respect to the fully
recurrent networks. The major difference among these methods
lies in how the feedback are included in the network.

Externally: As in the Narendra–Parthasarathy MLP [28]
also known as NARX network, where TDL’s are used for the
outputs that feedback to the input of the network (see Fig. 2),
and in the Elman’s network [40].

Internally: Inside each neuron.
The latter approach brings us to the so called locally recur-

rent neural networks (LRNN’s) or local feedback multilayer
networks (LF-MLN) [4], [18]–[20], [58]. In these structures,
classical infinite impulse response (IIR) linear filters [13], here
called also autoregressive moving average (ARMA) models,
are used either directly or with some modifications. Different
architectures arise depending on how the ARMA model is
included in the network.

The first architecture is the IIR-MLP proposed by Back
and Tsoi [3], [4] where static synapses are substituted by
conventional IIR adaptive filters [see Fig. 3(b)]. The second
architecture is the activation feedback locally recurrent multi-

(a)

(b)

(c)

(d)

(e)

Fig. 3. Model of the neuron for: (a) FIR-MLP, (b) IIR-MLP, (c) locally
recurrent activation feedback MLN, (d) output feedback MLN, and (e) auto
regressive MLP.

layer network studied by Frasconiet al. [18]–[21]. The output
of the neuron summing node is filtered by an autoregressive
(AR) adaptive filter (all poles transfer function) before feeding
the activation function; in the most general case the synapses
are FIR adaptive filters [see Fig. 3(c)]. The activation feedback
multilayer network is a particular case of the IIR-MLP, when
all the synaptic transfer functions of the same neuron have the
same denominator.
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The third structure is the output feedback locally recurrent
network proposed by Goriet al. [18]–[21]. In this architecture
the IIR filter is not simply placed in the classical neuron
model but is modified to make the feedback loop pass through
the nonlinearity, i.e., the one time step delayed output of the
neuron is filtered by a FIR filter whose output is added to
the inputs contributions, providing the activation. Again in the
general model the synapses can be FIR filters [see Fig. 3(d)].

The work of Goriet al. has its foundation in the work by
Mozer [41] in which the main idea was the introduction of
context units to include memory in a network, substituting
the spatial metaphor of the external buffer (common at that
time) with the recurrent context approach, as also suggested
by Elman in [40]. Context units are dynamic recurrent neurons
placed in the first layer to process the input signals while the
following layers are supposed to be static. This architectural
constraint also used in the works of Goriet al.has been chosen
basically to simplify the learning phase.

At last, there is another architecture [see Fig. 3(e)] that has
not been studied as the previous ones: it was proposed by
Mozer in [41] (with one delay feedback dynamic units in the
first layer only) and by Leighton and Conrath in [44] (multiple
delays and no restriction on the position of dynamic units). It
is again a multilayer network where each neuron has FIR filter
synapses and an AR filter after the activation function (AR-
MLP). It is easy to see that this network is a particular case
of the IIR-MLP, followed by linear all-pole filters.

Recently diagonal recurrent neural networks (DRNN) [30],
have been proposed for dynamic systems control, claiming
relevant results. This architecture is also a particular case of
output feedback MLN since DRNN is a two-layer network
with static linear output neurons and dynamic hidden neurons
with static synapses but with one delay feedback from the
output. Again the position of dynamic units is restricted to the
first layer only.

Another version of locally recurrent neural network was
presented in [54] with a biological motivation: a multilayer
connection of perceptrons with low-pass temporal filtering of
the activation.

The major advantages [4], [20], [21], [30], [40], [41], [58]
of locally recurrent neural networks with respect to buffered
MLP’s or fully recurrent networks can be summarized as
follows:

1) well-known neuron interconnection topology, i.e., the
efficient and hierarchic multilayer;

2) small number of neurons required for a given problem,
due to the use of powerful dynamic neuron models;

3) generalization of the popular FIR-MLP (or TDNN) to
the infinite memory case;

4) prewired forgetting behavior [20], needed in applications
such as DSP, system identification and control;

5) simpler training than fully recurrent networks;
6) many training algorithms could be derived from filter

theory and recursive identification.

In the following we will consider only locally recurrent neural
networks, particularly IIR-MLP and output feedback MLN
which are the most general and interesting architectures.

Some algorithms to train such networks exist, although a
comprehensive framework is still missing.

In this paper we propose a new gradient-based algorithm
for locally recurrent neural networks, called recursive back-
propagation (RBP) whose on-line version, causal recursive
backpropagation (CRBP) presents some advantages with re-
spect to the already known on-line training methods. The new
CRBP algorithm includes as particular cases backpropagation
(BP) [5], [48] temporal backpropagation (TBP) [8], [22]
backpropagation for sequences (BPS) [18], [19] and Back–Tsoi
algorithm [3], [12]. Moreover it allows for the training of
generalized output and activation feedback MLN’s which
have no constraint on the position of the dynamic units,
implementing communications among them, as suggested in
[21] and [47] for a better modeling.

The concepts detailed in this paper were developed in [62]
and later presented in [63].

The outline of this paper is as follows. Section II reports an
overview of gradient-based learning algorithms for locally re-
current networks. Section III gives the complete formulation of
the batch mode RBP algorithm for IIR-MLP, while Section IV
presents the on-line version, CRBP. Experimental results of
the proposed method are reported in Section V. In Section VI
we discuss issues related to the computational complexity and
implementation of the new algorithm. The extension of the
RBP to the other locally recurrent architectures is reported in
the Appendix.

II. GRADIENT-BASED LEARNING ALGORITHMS

FOR LOCALLY RECURRENT NEURAL NETWORKS

Internally static networks can be trained by the simplest
algorithms: for the buffered MLP of Fig. 1 with only input
buffer (with no recursion) the standard BP should be used,
while for the Narendra–Parthasarathy network shown in Fig. 2
the so called “open-loop” approximation [45], [50] of the
standard BP is usually employed. It consists in opening the
loop during the backward phase, feeding the network with the
desired outputs instead of the true network outputs. In IIR
adaptive filter theory this is the equation error approximation
of the true output error approach [13], in neural-network theory
this is the teacher forced technique [2].

Extension of Back propagation to recurrent networks was
first proposed in [5], [51], [52]. Pineda and Almeida [51], [52]
covered only the case when the recurrent network behavior re-
laxes to a fixed point. However, if a general temporal process-
ing is needed, two main gradient-based learning approaches
exist for recurrent networks [24], [25], [36]: Backpropagation
through time (BPTT) [1], [5], [7], [24], [36], [46] and real-time
recurrent learning (RTRL) [2], [23], [24], [27], [28], [36], [38],
[49], [56]. The algorithm in [23] is an hybrid method.

BPTT is a family of algorithms which extends the BP
paradigm to dynamic networks. There are two main points of
view to understand the BPTT algorithm. The first is an intuitive
one: time unfolding of the recurrent network, i.e., for single
layer single feedback delay fully recurrent networks one can
think of the network state at timeas if it was obtained from
the th layer output of a multilayer network with layers [5],
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where is the length of the sequence. The other point of view
is a mathematical one and it is based on the Werbos theory
of ordered derivatives [6]. Werbos provided a mathematical
tool to rigorously compute the derivatives of a certain variable
with respect to another one in complex structures described by
ordered mathematical relations (for example a neural network).

Actually, with ordered derivatives it is possible to derive
both BPTT and RTRL algorithms in the same framework [25],
[36]. The difference between BPTT and RTRL is in how the
chain rule derivative expansion is applied. More specifically,
during the learning phase, in BPTT the neural network is
computed backward both in the layer and time dimensions,
whereas in RTRL it is calculated forward (as in the forward
calculation). Reversing the signal flow graph provides the great
efficiency of BPTT, but the necessary reversion of time makes
it noncausal even when there is only one delay present inside
the network (i.e., after an adaptable parameter in the signal
flow graph) [26].

Therefore BPTT is local in space but not in time, and
is computationally simple but is noncausal; so it can be
implemented only in batch mode. For on-line adaptation
some approximations are needed, namely causalization and
truncation of past history, as explained in [1], [40], and [53]
for fully recurrent neural networks.

On the other hand, RTRL is local in time but not in space,
computationally complex but intrinsically on-line. RTRL also
implements an approximated calculation of the gradient if the
parameters are continually adapted since the true derivative
would require constant weights [1], [53].

In [53], Williams and Zipser report better performance and
convergence rate for truncated BPTT than RTRL and explain
this result stating that the history truncation approximation can
be better than the approximation implemented in RTRL.

Recently Wan and Beaufays [26] proposed a simple method
to derive BPTT for discrete time dynamic neural networks
composed of a general interconnection of weights, delays,
additive units, differentiable nonlinearities. This derivation can
be carried out with simple transformations of the signal flow
graph of the network itself; however the algorithm derived in
this way is always noncausal and the authors did not address
the question of on-line learning for networks with feedback.
Recently a new approach was derived based on signal flow
graphs that makes this derivation of both RTRL [59] and
truncated BPTT [60], [61] feasible but a detailed discussion is
beyond the aim of the paper.

Most of the above methods were studied for general fully
recurrent networks. On the other side several on-line learning
algorithms have been presented for specific dynamic multi-
layer neural networks, most of the times with no reference to
each other and to the general paradigms.

In [8] a learning algorithm, named temporal backpropaga-
tion, was proposed by Wan. This is an on-line version of the
batch mode BPTT approach [26]. However, it can only be
applied to the nonrecurrent FIR-MLP [Fig. 3(a)].

Backpropagation for sequences (BPS) is a learning algo-
rithm proposed by Goriet al. [18], [19], [21], [24], [38]
both for output and activation local feedback MLN’s (LF-
MLN’s), Fig. 3(c) and (d). It is interesting because it is local

both in time and in space, computationally simple and with
small memory requirement; in fact it is only slightly more
complex than standard BP. However it can be applied only
to LF-MLN with no dynamic units in layers other than the
first one. BPS basically is the classical backpropagation on the
multilayer network with a recursive computation only inside
each dynamic neuron. Due to the architectural constraints,
this algorithm does not implement backpropagation through
a dynamic structure.

The same approach was proposed by Mozer in [41] indepen-
dently deriving a similar algorithm named focused backpropa-
gation for a particular AR-MLP. BPS was rediscovered in [30]
where it was derived for a structure that is a particular case
of the output feedback LF-MLN and was applied to control
problems with good results.

In [3] and [12], a learning algorithm for IIR-MLP, Fig. 3(b),
was proposed by Back and Tsoi. It is similar to BPS, imple-
menting both a backpropagation and a recursive computation,
but without any architectural restriction. However, to avoid
dynamic backpropagation, they propose using static backprop-
agation even through a dynamic neuron.

Analogous learning algorithms are also: autoregressive BP
proposed by Leighton and Conrath [44] for the AR-MLP,
and the algorithm in [54]. They are equivalent to Back–Tsoi
algorithm since they also use instantaneous backpropagation
without implementing the full backpropagation through a
dynamic unit. So in the following of the paper we will call
Back–Tsoi algorithm the method with instantaneous backprop-
agation and we will not refer anymore to the works in [44]
and [54].

The on-line algorithm proposed in this paper, i.e., CRBP,
whose basic ideas were presented in [16] and [17], implements
and combines together BPTT and RTRL paradigms for locally
recurrent networks. It works with the most general locally re-
current networks and implements a more accurate computation
of the gradient than the Back–Tsoi method. While Back–Tsoi
algorithm uses an instantaneous error as cost function, the
CRBP algorithm can minimize the global error; this fact
results in an improved stability of the algorithm. The name
that we use, i.e., causal recursive backpropagation (not to
be confused with recurrent backpropagation [51], [52]) was
chosen to remember the dual nature of the algorithm: BPTT
style formulas are used to backpropagate the error through the
neurons and recursive computation of derivatives inside each
neuron is implemented to calculate weights variations.

It is well known that RTRL and BPTT approaches are
equivalent in batch mode operation [36]: they compute the
same weights variations using different chain rule expansions.
Since CRBP uses another expansion of the same derivatives, it
becomes equivalent to them when used in batch mode (RBP).
Since BPTT is computationally simpler than RTRL or RBP
it is the algorithm of choice working in batch mode, unless
the memory requirement is an issue. In this case RTRL can
be preferred since for long sequences it requires less memory
(see Section VI).

However the three methods are not equivalent in on-line
mode. In this case truncated BPTT must be considered instead
of BPTT and CRBP instead of RBP. It must be stressed that
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in CRBP each local feedback of a certain neuron is taken into
account with no history truncation (necessary for truncated
BPTT) for the adaptation of the coefficients of the same
neuron, using recursive formulas instead of noncausal ones
as in the truncated BPTT approach.

In other words, the RBP algorithm computes exact gradient,
is not local in time (like BPTT) but has the advantage
that it can be efficiently implemented on-line (CRBP) at
approximately the same cost, with a parameter that controls the
tradeoff between exactness of the gradient and computational
time. With respect to RTRL the proposed CRBP algorithm has
the advantage of being local in space and in time while RTRL
is not local in space.

A reasonable and standard definition of locality is the fol-
lowing. An algorithm is local in space if the update complexity
per time step and weight does not depend on network size.
A method is local in time if its storage requirements do
not depend on input sequence length. In fact the proposed
algorithm CRBP is “quasi” local in space, meaning that this
property is satisfied asymptotically if the number of neurons
increases. This is due to the fact that the complexity is
linear with the number of coefficients to be adapted at the
network level while is quadratic at the neuron level, since the
computation is locally (i.e., inside the neuron) recursive, i.e.,
of RTRL type.

Of course the gradient calculation techniques developed in
this paper can be implemented in second-order methods such
as conjugate gradient or Kalman filter based algorithms [29],
but this is beyond the aim of the paper.

In the following section the recursive backpropagation batch
learning algorithm and its on-line version are derived for the
MLP with IIR synapses; the formulas for LF-MLN’s and
AR-MLP are in the Appendix.

III. T HE RECURSIVE BACKPROPAGATION

ALGORITHM FOR MLP WITH IIR SYNAPSES

An IIR-MLP contains in each synapse a linear filter with
poles and zeros, which are the AR and moving average (MA)
part, respectively. Due to the complexity of the resulting
structure, a rigorous notation is needed, where each index is
explicitly written. This notation, which is a generalization of
that used in [48] for static MLP and in [8] and [11] for FIR-
MLP, is appropriate in this case where complex architectures
of different kinds are defined and compared.

A. Notation

Number of layers in the network.
Layer index. In particular and
denote the input and output layer, respectively.
Number of neurons of theth layer. In particular

and denote the number of inputs and
outputs, respectively.
Neuron index.
Time index, , where is the
length of the training sequence.
Output of the th neuron of theth layer, at time
. In particular refers to the bias inputs:

Fig. 4. A simple example of IIR-MLP network (the bias terms are not
shown).

. Note that , are
the input signals.
Order of the MA part of the synapse of theth
neuron of theth layer relative to the th output
of the th layer. and .
Order of the AR part of the synapse of theth
neuron of theth layer relative to the th output
of the th layer. and .

coefficients of the MA

part of the corresponding synapse. If ,
the synapse has no MA part and the weight
notation becomes . is the bias.

coefficients of the AR part

of the synapse. If the synaptic filter is
purely MA.

weight Either a or coefficient.
Activation function.
Derivative of .
Synaptic filter output at time relative to the
synapse of th neuron, th layer, and th input.

is the bias.
“Net” quantity relative to the th neuron of
the th layer at time , i.e., the input to the
corresponding activation function.

desired outputs at time.

To further clarify the notation, a simple two-layer ( )
IIR-MLP with two inputs ( ), one hidden neuron
( ) with no MA and AR parts in each synapse (
and for ) and one output neuron ( )
with both MA and AR parts in the synapses ( and

), is shown in Fig. 4.

B. The Forward Phase

The forward phase at time can be described by the
following equations evaluated for and

:

(1)
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(2)

For (1), the direct form I of the IIR filter has been used
[13], but other structures are possible. In particular, direct
form II structures allow reduction in the storage complexity
as well as in the number of operations, both in forward and
backward computation (see Section VI). For the sake of clarity
the expression corresponding to (1) in the IIR filter usual
notation [13] is reported

(3)

where is the output, the input of the IIR filter, are
the coefficients of the MA part, of the AR part, and

, respectively, the orders of the MA and AR parts, that
can also be written

(4)

where

and

(5)

where is the delay operator, i.e., .
In this case the dependence of the coefficients upon time

is explicitly stated with the index, since we are considering
adaptive filters that are adapted every time step. However, in
the neural network in order to reduce the complexity of the
notation we will not use the explicit indication of time.

C. The Learning Algorithm (RBP)

The instantaneous global squared error at timeis defined as

with (6)

So the global squared error over the whole training sequence is

(7)

where is the duration of the sequence.
In the most general case, the training set of a dynamic neural

network is composed of a certain number of training sequences
(runs), and so the error to be minimized is the statistical
average of the error over all the runs. To simplify the
notation we will consider only one run but the extension is
straightforward.

Let us define the usual quantities “backpropagating error”
and “delta”

and (8)

As in the static case, it holds

(9)

Therefore, using gradient descent method and the chain rule
expansion

(10)

where is the learning rate.
The above equation can be rewritten as

(11)

where

(12)

Similarly for the weights we have

(13)

where

(14)

Expressions to compute and the derivatives in (12) and
(14) must be provided.

Differentiating (1) and considering that
,

where “ ” indicates either or , we get

(15)

(16)

Note that such expressions are the same found in the IIR linear
adaptive filter theory [13, (16a), (16b)]

or

(17)

or

(18)

where the weights time index is not explicitly written to avoid
notational clutter.
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The formulas (15) and (16), as in the IIR linear adaptive
filter context, are exactly true only if the weights (or ) are
not time-dependent, because the derivatives evaluation point
is fixed, or approximately true if they adapt slowly, i.e., the
learning rate is sufficiently small [2], [13]. In batch RBP the
weights update is performed only at the end of the learning
epoch using the accumulated weight variations computed at
every time instant, so that the above expressions are exact and
can be computed iteratively starting with null values of the
initial derivatives.

Now we want to derive an expression for : by (9) we
need to compute ; using the chain rule it is possible to
obtain

for

(19)

By the last expression, under the hypothesis of IIR synaptic
filter causality, the internal summation can start from .
Then, changing the variables as , using the definition
of and considering that for the derivative can
be directly computed, the backpropagation through the layers
can be derived

for

for

(20)

where the partial derivatives are computed using (1)

if
otherwise

(21)

These derivatives have a very interesting interpretation. Con-
sider the expression of a generic causal linear filter output as
the convolution of the input with an impulse response

(in general time variant case)

(22)

where is the initial time instant. Differentiating we get

(23)

If the learning algorithm updates the coefficients only at the
end of the epoch (batch mode adaptation), then the IIR filter
is time invariant and

if
otherwise

(24)

where the operator now is delaying the index and not the
index, is the impulse response of the filter and ,

previously defined, does not depend on. Obviously, if the
filter is time invariant, the derivative does not depend on.
This means that the derivative is obtained through AR filtering
of the sequence of the coefficients of the MA part with the AR
part of the corresponding IIR synaptic filter. This is true since
for the causal filter the derivative inside the summation is zero
if , allowing the upper limit of the summation in (21) to
be written also as . If the learning rate is small enough,
also when on-line adaptation is performed the derivative is
slowly changing in time, i.e., with the index in (21).

Therefore, for MLP with IIR synapses, (20) suggests that
each back propagating error at layeris a summation of all the
delta’s at the following layer filtered by the noncausal version
of the respective IIR filter, i.e., filtering by the time reverted
impulse response of the synaptic filter.

The expressions (1), (2), (9), (11)–(16), (20), and (21)
constitute the RBP algorithm for IIR-MLP. Note that, if all the
synapses contain only the MA part ( for each ,
and ), the architecture reduces to FIR-MLP and this algorithm
reduces to the temporal backpropagation (TBP; batch mode)
as in [8], [11], [22], [37]. Obviously, if all the synaptic filters
have no memory ( and for each ,
and ), this algorithm gives standard Back propagation (batch
adaptation) for the MLP. Moreover the on-line versions of
TBP and BP are obtained as particular cases of CRBP.

Fig. 5 shows the diagram of the RBP applied to the simple
IIR-MLP example of Fig. 4, with a simplification of the re-
cursive computation of derivatives, as explained in Section VI.
These are the steps of the algorithm for each learning epoch:

• perform forward pass for the entire input sequence saving
the states of the network at all times, using (1) and (2);

• start the backward pass computing the error for all the
outputs and time instants;

• compute the derivatives in (21) iteratively with null initial
conditions;

• for to one

— compute by (20) ;
— compute by (9) ;
— compute the weights variations using (11)(16);
— update weights.

Since the RBP recursive expressions (15), (16), and (21)
have the same feedback coefficients as the corresponding
IIR filter in the forward expression (1), the learning algo-
rithm calculation will be stable if all the IIR filters are
stable.

IV. THE ON-LINE RBP ALGORITHM

CAUSAL RECURSIVE BACKPROPAGATION (CRBP)

As previously stated, the RBP algorithm is used only as an
intermediate step in the derivation of CRBP. In fact, as shown
by (20), the exact RBP algorithm is noncausal, since the
at time depends on the quantities, taken at future time
instants. Therefore the weights update can only be performed
in batch mode.
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Fig. 5. The RBP applied to the IIR-MLP example of Fig. 8 (the bias terms are not shown). It is obtained assuming batch mode (no causalization or
truncation) and simplified recursive computation of derivatives.

However the RBP algorithm, due to the recursive structure
of (15) and (16), can be easily approximated to obtain a very
efficient on-line learning algorithm. The on-line approximation
consists of three steps: 1) incremental instead of cumulative
adaptation; 2) future convolution truncation; and 3) causaliza-
tion. In this section, the IIR-MLP case is fully considered. The
extension to the other LF-MLN architectures is routine, and
so we only explain some nonobvious differences.

1) Incremental instead of cumulative adaptation can be
implemented using

(25)
instead of (11) and (13), at each time step, where
“ ” indicates either or . This is the approxi-
mation that is usually proposed in literature for dynamic
networks. However, a less obvious choice could be done

(26)

This expression can be computed iteratively (with an
approximation) that is equivalent to using a momentum

term with momentum parameter equal to one. In fact
the momentum formula is

(27)

where is the momentum parameter that in general
can be chosen in the range: . Here we
will consider only the incremental adaptation without
momentum.

2) If a causalization is desired, a truncation of the future
convolution is necessary, due to the infinite memory of
the IIR synapses. The truncated formula is therefore

for

for

(28)

where is appropriately chosen. In the particular
case when in a given layer for each (i.e.,
the synapses have finite memory) it is useful to choose
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Fig. 6. The CRBP applied to the IIR-MLP example of Fig. 8 (the bias terms are not shown). It is obtained assuming on-line mode (with truncation and
causalization) and simplified recursive computation of derivatives. The Back–Tsoi approximation uses the same flow diagram but with a multiplication
for w(2)

11(0)
instead of the truncated IIR filtering andQ2 = 0.

. In this way, is set to the

maximum memory of the synaptic filters of the layer and
no real truncation of the filter response is implemented
as in Wan’s temporal backpropagation [8], [22].

3) Then we have to introduce a suitable number of delays
in the weight adaptation formulas in order to remove the
noncausality. In other words

(29)

where is a suitable integer number. It follows that
if

if (30)

The causalized formula can be obtained from (28) by
reversing the order of the internal summation and issuing
the variable change , where is the current

time instant (present)

for (31)

In (28) and (31), the trivial hypothesis for
has been done. Expression (31) is now causal

since it is evaluated at time from delta’s up to time
. The impulse response computed by (21) is used by

reversing the time scale since
in the time invariance hypothesis

(or in that approximation), whereas backpropagating
errors and delta’s are used in the normal time scale,
as for standard convolution.

The result is not assigned to the backpropagating error at
time but at time , as dictated by (31). For the sake
of clarity, a diagram of CRBP is shown in Fig. 6.
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The causalization and the on-line update, compared to
the batch mode case, is not a strong approximation if the
learning rate is small enough, because in this case the weights
variation is small in the time interval of instants. Instead
the truncation approximation can be justified by the following
property.

• If a linear time invariant IIR filter is asymptotically stable
(i.e., all the poles of the transfer function are inside the
unit circle) then if where

is the output of the filter and the input at time .

The proof can be done in two ways that are both interesting.
The first is just considering that the derivative is the impulse
response of the filter that must go to zero in the stable
case. The second is considering that in (21) and (24) the
recursion coefficients are the same of the corresponding IIR
filter therefore their poles must lie inside the unit circle for
stability, i.e., the derivative goes to zero as . The second
reasoning is more general and it is interesting because it shows
a way to verify the validity of the truncation hypothesis for any
locally recurrent network architecture, e.g., output feedback
MLN. For the derivative to go to zero it is necessary and
sufficient that the feedback coefficients in the calculation of
(21) or the corresponding expressions in the Appendix, give
poles inside the unit circle.

Moreover, it is well known that impulse responses of stable
rational transfer functions have an exponentially decaying
behavior. This means that the truncation parameter can be
chosen quite small. This fact was confirmed by the simulations
even if they show that setting the truncation parameter to zero
is a too strong approximation that should be avoided.

The previous property can be used to automatically select
the desired truncation parameter by taking into account
the impulse response explicitly computed by the algorithm.
In the subsequent discussions this possibility is not further
investigated, since for the selected problems a good choice of
the truncation parameter was within a very small range.

The condition if where
is the output (or the net) and an input of a recurrent

neuron [20], [55] holds by definition for each neuron in IIR-
MLP, activation-output feedback MLN’s and AR-MLP in case
each neuron exhibits forgetting behavior. Instead in case of
latching behavior (possible only for output feedback MLN),
that derivative does not go to zero and the corresponding
linear system is unstable [20]. In this case, the truncation of
the internal summation in (20) (see the Appendix) can be too
strong an approximation. However, it should be considered
that the advantages of networks with local feedback over fully
connected ones is especially in modeling a forgetting behavior.
Latching behavior is outside normal working conditions for
locally recurrent networks.

The algorithm proposed by Back and Tsoi [3], which is the
only on-line learning algorithm proposed for locally recurrent
networks with no architectural restriction, can be seen as a
particular case of our approximation where a strong truncation
of the summation is assumed: for each . The

simplified formula is

for

for

(32)
In this way the backpropagation is considering only the
instantaneous influence of the IIR filter input on the output
(the coefficient ). Hence in the scheme of Fig. 6, the
truncated IIR filter should be replaced by a simple multiplica-
tion for . No causalization is needed (because
for each ) and the algorithm is very simple. However, we shall
show that with the inclusion of only few additional memory
terms in the backpropagation ( ) it is possible to reach
much better stability and speed of convergence.

Also the BPS algorithm (on-line mode) [18] can be ob-
tained as particular case of CRBP under the architectural
restriction that the dynamic units can be only placed in the
first layer. In this case, like BPS, CRBP implements no real
truncation of past history. The CRBP applied to AR-MLP can
be also viewed as a generalization of the Leighton–Conrath’s
work [44], although their formulas do not exactly match the
expression corresponding to (32) for the AR-MLP.

V. EXPERIMENTAL RESULTS

The simulation results reported here are of two kinds. The
first is a comparison of different locally recurrent architectures
with more traditional dynamic MLP using a fixed training
method for each one. The second and more important simula-
tion is the comparison of runs of CRBP with different values
of the truncation parameter and of CRBP with other training
methods, keeping the architecture fixed. Each of these two
simulations was run on two different system identification
tasks.

Many simulations were performed on three locally recurrent
architectures [shown in Fig. 3(b)–(d)] while the AR-MLP
[Fig. 3(e)] was not implemented. For comparison purposes,
also two traditional neural networks were tested, namely the
static MLP with input and possibly output buffer, (shown in
Figs. 1 and 2), and the FIR-MLP [Fig. 3(a)]. The results re-
ported here refer to two problems of identification of nonlinear
dynamical systems.

The number of delays for the five architectures (i.e., buffers
lengths for the buffered MLP’s, MA orders for the FIR-MLP,
MA, and AR orders for the locally recurrent networks) was
chosen in order to obtain the best performance (approximately)
for each network, while the total number of free parameter was
fixed (40 parameters, bias included), as shown in Table I.

All the networks used had two layers, three hidden neu-
rons with hyperbolic tangent activation function, and one
linear output neuron. Three different learning algorithms were
used: standard static backpropagation for buffered MLP (with
open-loop approximation if feedback is present), temporal
backpropagation for FIR-MLP [8] and the proposed CRBP
algorithm for the locally recurrent networks. Momentum term
and adaptive learning rate were not used. The results are
given in terms of mean-square-error (MSE), expressed in dB,
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TABLE I
NUMBER OF DELAYS FOR THE DIFFERENT BUFFERSUSED FORALL THE NEURAL NETWORKS IN BOTH THE SYSTEM IDENTIFICATION EXPERIMENTS. FOR THE

THREE LOCALLY RECURRENT ARCHITECTURES THENUMBER OF DELAYS FOR THE MOVING AVERAGE PART (INPUT BUFFER) AND THE AUTO

REGRESSIVEPART (FEEDBACK BUFFER) FOR THE HIDDEN AND OUTPUT LAYERS ARE SPECIFIED. ALL THE NEURAL NETWORKS HAVE THE SAME

NUMBER OF ADAPTABLE PARAMETERS, i.e., 40 BIAS INCLUDED, WITH THE ONLY EXCEPTION OF THE ACTIVATION FEEDBACK MLN U SED

FOR THE BACK–TSOI SYSTEM THAT HAS 34 PARAMETERS. INSIDE BRACKETS THE SHORT NAMES USED IN TABLE II AND FIGS. 11 AND 14

computed on the learning set after each epoch (after all the
input–output samples were presented) and averaged over ten
runs, each with a different initialization of the weights. Also,
after each iteration the network state was reinitialized.

A. First Simulation: Back–Tsoi System Identification

The first set of experiments consisted in identifying the
nonlinear system with memory presented by Back and Tsoi in
[12]. This system is described by the following input–output
relationship:

(33)

where and are the input and output signals at time
, respectively. The input sequence consists of 1000

points of white random noise, with a uniform probability
density function between 1 and 1. This sequence and the
corresponding output sequence constituted the training set
for the various neural networks.

From Fig. 7, it is evident that the locally recurrent MLP’s
exhibit much better modeling capabilities than the static MLP
or FIR-MLP, and much better accuracy (asymptotic MSE) too.

The learning was stopped at 200 iterations chosen as a
reasonable number of iterations for each architecture. This
simulation (and the corresponding one in the second set of
experiments) is included basically to justify the choice of this
test problem for comparing learning algorithms for locally
recurrent neural networks. Since locally recurrent networks
perform better than traditional ones on this problem it follows
that it is a reasonable choice to test the CRBP learning
algorithm; the same is true for the second problem. Fig. 8
shows the performance of the CRBP learning algorithm with
different values of the truncation parameters (

is the Back–Tsoi algorithm). It is clear that the CRBP
performs much better than the previous algorithm even with

Fig. 7. Convergence performance of various algorithms and networks on
identifying the Back–Tsoi test system. STAT is buffered MLP, FIR is
FIR-MLP, IIR is IIR-MLP, ACT is activation feedback MLN, OUT is output
feedback MLN. Learning rate� = 0:01. Truncation parameterQ2 = 10.
Plots are averaged over ten runs with different weight initializations.

small , i.e., with a small number of recursive terms. A
very small truncation parameter is required to obtain good
performance, while increasing it beyond a certain small range
does not change the MSE appreciably. The BPS algorithm
was not included in the comparison because it is not appli-
cable to the architecture selected, since the output neuron is
dynamic.

B. Second Simulation: 16-PAM System Identification

The second set of experiments was carried out on the more
realistic problem of identifying a baseband equivalent PAM
transmission system in the presence of a nonlinearity [14].
The pulse shaping circuit transforms the discrete-time symbols
stream into a continuous-time signal (PAM) by a filter
with a raised-cosine shape and roll-off factor. The signal
is then processed by the high-power-amplifier (HPA) which is
modeled here by the following input–output relationship:

(34)
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(a)

(b)

(c)

Fig. 8. Convergence performance of locally recurrent networks trained by
CRBP with various values of the truncation parameter (Q2) on identifying the
Back–Tsoi test system. (Q2 = 0 gives the Back–Tsoi algorithm). Learning
rate� = 0:003. Results for (a) IIR-MLP, (b) activation feedback MLN, and
(c) output feedback MLN. The MA and AR orders were chosen, respectively,
as 1 and 4, for both the hidden and output layers of all the networks. Plots
are averaged over ten runs with different weight initializations.

The peak power of the input signal is set to the value of
dB (back-off factor), with dB being the normalized

unit power. The HPA output is corrupted by an additive
white Gaussian noise , producing the final signal with
a given signal-to-noise ratio (SNR) (c.f. Fig. 9). The overall
system is clearly dynamic and nonlinear.

A neural-network approach to equalize this system has
already been proposed in the technical literature [15]. In our
experiment a neural network was used instead to identify a
sampled version of the system. For this purpose, was

Fig. 9. Block diagram of the PAM transmission channel used in the sim-
ulations.

Fig. 10. Convergence performance of various algorithms and networks on
identifying the 16-PAM transmission system. STAT is buffered MLP, FIR is
FIR-MLP, IIR is IIR-MLP, ACT is activation feedback MLN, OUT is output
feedback MLN. Learning rate� = 0:01. Truncation parameterQ2 = 10.
Plots are averaged over ten runs with different weight initializations.

chosen to be a random sequence of 512 symbols drawn from
a 16-symbols alphabet. The pulse shaping filter had a roll-off
factor , and the HPA back-off was set to 2 dB.
The noise level was very low: SNR dB.

By using an over-sampling ratio of four at the output
with respect to the symbol rate, the sequences of 512
symbols and of 2048 samples were used as the learning
set and again the MSE was computed after all the 512 input
symbols (epoch) were presented.

Fig. 10 shows the performance of the five neural architec-
tures: again the locally recurrent MLP’s perform much better
than the two conventional MLP’s in modeling the system.

Simulations reported in Fig. 11 show that CRBP, is much
faster, stable and also more accurate than the Back–Tsoi
algorithm that sometimes does not converge. Again, a very
small truncation parameter of CRBP is required to obtain good
performance, while increasing it over a certain, small, range
does not change the MSE appreciably. Generalization tests for
the identification of the 16-PAM channel were made using
an input symbol sequence different from the one used for
learning. Results are given in Tables II and III; they show
a MSE on the test set very close to that obtained using the
learning set, for all the dynamic architectures and for various
choices of the truncation parameter.

The derivation of RTRL and truncated BPTT for locally
recurrent neural networks is quite difficult by traditional ap-
proaches (chain rule expansions) and is a not yet published
result to the best of our knowledge. Recently, a new ap-
proach was derived based on signal flow graphs that makes
this derivation feasible [59]–[61] but a detailed discussion is
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(a)

(b)

(c)

Fig. 11. Convergence performance of locally recurrent networks trained by
CRBP with various values of the truncation parameter (Q2) on identifying
the 16-PAM transmission system. (Q2 = 0 gives the Back–Tsoi algorithm).
Learning rate� = 0:003. Results for (a) IIR-MLP, (b) activation feedback
MLN, and (c) output feedback MLN. The MA and AR orders were chosen,
respectively, as two and three for both the hidden and output layers of all the
networks. Plots are averaged over ten runs with different weight initializations.

beyond the aim of the paper. For the sake of completeness,
the learning performances and the computational complexities
have been studied including these algorithms which are de-
rived in [59] and [60]. Fig. 12 shows that CRBP, RTRL and
truncated BPTT are substantially equivalent and the Back–Tsoi
method is much less performant. With this regard it should
be considered that for implementation reasons the truncated
BPTT is implemented with weights values at the proper time
step in each time in the past history considered [1], while in
CRBP they are set as the ones at the current time step, saving

TABLE II
GENERALIZATION PERFORMANCE OFVARIOUS LOCALLY RECURRENT NEURAL

NETWORKS ON IDENTIFYING THE 16-PAM TRANSMISSION SYSTEM.
STAT IS BUFFERED MLP, FIR IS FIR-MLP, IIR IS IIR-MLP, ACT IS

ACTIVATION FEEDBACK MLN, OUT IS OUTPUT FEEDBACK MLN.
THE ARCHITECTURES ANDPARAMETER SETTING ARE THE SAME AS

FOR THE RESULTS REPORTED IN FIG. 14. RESULTS ARE AVERAGED

OVER TEN RUNS WITH DIFFERENT WEIGHTS INITIALIZATIONS

TABLE III
GENERALIZATION PERFORMANCES ON THEIDENTIFICATION OF THE 16 PAM
SYSTEM OF CRBP WITH DIFFERENT VALUES OF THE TRUNCATION TERM

Q2, FOR A SPECIFIC IIR-MLP, HAVING THE SAME ARCHITECTURE AS

FOR THE RESULTS REPORTED IN FIG. 15(a). RESULTSARE AVERAGED

OVER TEN RUNS WITH DIFFERENT WEIGHTS INITIALIZATIONS

further complexity. Moreover, as explained in the following
Section, RTRL and truncated BPTT are more complex than
CRBP with regard to arithmetic operations, and also CRBP
compared to RTRL has the advantage of being local in space.

VI. A NALYSIS OF COMPLEXITY AND IMPLEMENTATION ISSUES

For the simple case of a fully recurrent, single layer,
single delay neural network composed of neurons, the
computational complexity is operations per time step
for epochwise BPTT or for truncated BPTT [1] (where

is the past temporal depth) compared with for RTRL.
The memory requirement is for epochwise BPTT (in
this case is the epoch length) or truncated BPTT, and
for RTRL. Therefore as far as computational complexity is
concerned, in batch mode BPTT is significantly simpler than
RTRL, whereas in on-line mode the complexity and also the
memory requirement ratios depend on . Therefore if is
large enough compared to then Truncated BPTT is more
complex than RTRL, but usually the contrary is true.

The recursion implemented in RBP is less efficient with
respect to the calculation in BPTT, so for batch mode, BPTT
should be preferred, unless the memory requirement is an
issue. In this case RTRL can be preferred since for long
sequences it requires less memory.
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Fig. 12. Convergence performance of an IIR-MLP network trained by CRBP, Back–Tsoi, RTRL, and truncated BPTT on identifying the 16-PAM transmission
system. The MA and AR orders were chosen, respectively, as three and two for both the hidden and output layers;Q2 = h = 10. Plots are averaged
over ten runs with different weight initializations.

The advantage of RBP is evident only in on-line mode. In
this case the proposed CRBP algorithm is more efficient than
truncated BPTT, since it has a better scaling of the number
of operations increasing the respective truncation parameter,
i.e., and .

The explanation of this fact is intuitive and detailed by the
analysis of complexity. While in truncated BPTT for each
parameter adaptation a summation of the products between
delta and the parameter inputs must be computed over the
considered time steps past history, in CRBP the analogous
of this summation is computed to calculate the delta (31)
that is used to adapt many weights, saving computation. For
each parameter adaptation no summation in time is needed
but just the product betweendelta and the derivative of
the net with respect to the parameter [(12) and (14)]. The
calculation scheme used is also motivated as a generalization
to the recursive case of that implemented in Wan’s temporal
backpropagation [8], which is the main training method for
TDNN, and also of that used in adjoint least mean square
algorithm [57], a well known training procedure in the signal
processing community.

The increase in computational complexity between the
Back–Tsoi algorithm [3] and CRBP is only in formula (28):
since, due to the recursion, the truncation parameter ()
can be usually chosen quite small (verified in our simulations
and theoretically motivated by the exponential decaying of
impulse responses of stable rational transfer functions) making
this increase fairly small. This holds of course in the case
of forgetting behavior and not in the case of long-term
dependencies but the first is the normal working condition of
network with local feedback. In our simulations, we observed
that the ratio between the execution times of CRBP and

Back–Tsoi algorithm (one iteration) is less than 1.5, for usual
architectures and parameter settings.

A mathematical evaluation of complexity can be carried
out computing the number of multiplications and additions
for one iteration (i.e., one sample here) of the learning phase
(on-line learning). In Table IV, results for CRBP, Back–Tsoi,
RTRL, and truncated BPTT are reported in the significant
special case of two layers IIR-MLP with bias and with MA-
AR orders depending only on the layer index:

.
The numbers in Table IV must be added to the number

of operations of the forward phase, always done before the
backward phase.

The number of multiplications or additions of the forward
phase (one iteration) is

(35)

To provide an easy evaluation of complexity, Tables V and
VI report the numbers of operations obtained from Table IV
for the parameters choice of some simulations reported here.
These values should be added to the number of forward op-
erations before computing complexity ratios between different
algorithms.

By these formulas, substituting the configuration parameters
of each of the three IIR-MLP networks used in the simulations
reported, and with , it is possible to get an averaged
ratio – and –

, proving that the increase in complexity is quite small.
Moreover, for IIR-MLP and activation feedback MLN it is

possible to apply to CRBP the same simplification proposed
by Back and Tsoi in [12] for their algorithm. The idea
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TABLE IV
NUMBER OF OPERATIONS FOR ONEITERATION OF THE ON-LINE LEARNING PHASE FOR THE DIFFERENT ALGORITHMS: GENERAL EXPRESSIONS

TABLE V
NUMBER OF OPERATIONS FORONE ITERATION OF THE ON-LINE

LEARNING PHASE FOR THE DIFFERENT ALGORITHMS WHEN:
N0 = 1; N1 = 3; N2 = 1; L(1)

= L(2)
= 3,

I(1) = I(2) = 2; Q2 = 10; h = 10

TABLE VI
NUMBER OF OPERATIONS FORONE ITERATION OF THE ON-LINE

LEARNING PHASE FOR THE DIFFERENT ALGORITHMS WHEN:
N0 = 1; N1 = 3; N2 = 1; L(1)

= L(2)
= 3,

I(1) = I(2) = 2; Q2 = 4; h = 4

is exactly the same used in the adaptive IIR filter context
[13], [43] and is explained in the following, considering only
IIR-MLP for the sake of simplicity. To compute the
quantity we have to pass the input of the synapse through
the IIR synaptic filter; while to compute
we need to pass the same input through the AR part only
of the same filter. So, implementing the IIR filter in direct
form II (i.e., filtering the synaptic input during the forward
phase separately with the AR and MA parts) and keeping the
intermediate value, the quantity is imme-
diately available during the backward phase without further
computations.

Moreover it is possible to introduce an approximation [12]
to get an additional decrease on complexity: computing the
different values of ( is or

) for the different as the same quantity obtained for the
first delayed by a suitable number of time steps, as shown in
Fig. 6. This approximation is already known in the adaptive
IIR filter theory [13], [43] and is reasonable if the coefficients

change slowly in time (a small learning rate is used) since it
assumes the time invariance of the filter. The simulations do
not show an appreciable loss of performance in the learning
process [12], [13], [43], while the number of AR filtering
operation per synapse is reduced from to one.
Even if this approximation works well in our simulations we
used the exact formulas.

We tested another minor simplification of the CRBP formu-
las, neglecting the recursive part of (15), (16), and (21) (i.e.,
assuming null past values) as it is sometimes done for IIR
linear adaptive filters. However, the obtained performance of
just this minor simplification were so unsatisfactory that we
did not use it anymore.

About the stability of the CRBP algorithm, in all the
simulations we observed that, if the IIR network was initialized
with stable synapses, the final result is a stable network as long
as a small enough learning rate is used. A similar behavior was
exhibited by all the other locally recurrent architectures.

VII. CONCLUSIONS

In conclusion, the results presented in this work show
that the locally recurrent MLP’s have superior modeling
capabilities with respect to more traditional networks, namely
MLP with external memory and FIR-MLP (or TDNN) for
identification of the systems tested; see [39] for a comparison
on other test problems. We described a general approach for
deriving on-line algorithms for locally recurrent networks that
are local both in time and in space and proposed a new learning
method, that, includes as special cases, several algorithms
already known in the literature. The proposed algorithm has
better stability and higher speed of convergence compared
to the Back–Tsoi method, as expected by the theoretical
development and confirmed by simulations. Stability and speed
of convergence are very important in real on-line applications,
e.g., where time varying systems have to be tracked. The only
drawback of the algorithm is a slight increase in complexity
with respect to Back–Tsoi method, which however can be
easily reduced.

With respect to an application of RTRL and truncated BPTT,
the proposed algorithm is computationally simpler and easier
to implement.
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APPENDIX

RBP FOR LOCAL FEEDBACK MLN’ S

AND AUTOREGRESSIVEMLP

For uniformity of presentation, the RBP algorithm is cov-
ered in this Appendix instead of CRBP. Of course the same
modifications explained in Section IV can be implemented to
derive the CRBP from the RBP method.

In all of the following cases if no feedback is present
( for each and ), each architecture becomes
a FIR-MLP and the RBP algorithm gives Wan’s temporal
backpropagation (batch mode). If no memory is present at
all ( and for each , and ) then
each architecture becomes a standard MLP and RBP gives
BP (batch mode). The on-line mode versions of TBP and BP
are obtained as particular case of CRBP.

The forward and backward formulas for LF-MLN’s and
AR-MLP differ from those already derived for the IIR-MLP
because the AR filtering is performed once for every neuron
and not for every synapse, lowering the number of free
parameters. Therefore the input index of the AR coefficients
( ), and the AR order () is now meaningless and will be
dropped in the following.

A. Activation Feedback MLN

Only the formulas which are different from those corre-
sponding to the IIR-MLP are reported here. They can be
easily derived in a similar way. The forward formulas are
now replaced by

(1 )

(2 ).

It should be noted that now does not represent the net
quantity anymore since it differs from that for the additive
bias. Due to this bias term the relation between delta and
backpropagating error is

(9 )

The coefficient variations are now computed using the deriva-
tives expressed by

(15 )

(16 ).

The backpropagation is now

for

for

(20 )

where the derivatives are computed as

if
otherwise

(21 )

Backpropagation for sequences [18] (batch mode) for acti-
vation feedback MLN is obtained as a particular case if the
architecture is constrained to have dynamic units only in the
first layer. In our notation this is written: and
for and for each . In this case standard BP is applied
to compute delta since (20) and (21) become

for

for

Since RBP is a batch mode algorithm (cumulative adaptation
of weights) the particular case is still a batch mode algorithm.
The on-line original version of BPS is obtained from the CRBP
or simply substituting cumulative with incremental adaptation
in RBP.

B. Output Feedback MLN

The important difference of output feedback MLN
[Fig. 3(d)] with respect to IIR-MLP and activation feedback
MLN is that in the former the dynamic part and the
nonlinearity are not separated anymore.

Now it is not possible to look at the internal summation
of (20) as future convolution, because the derivative is not
an impulse response anymore, due to the nonlinearity. The
differences in the learning formulas with respect to the acti-
vation feedback MLN is basically that the AR coefficients are
now multiplied with the derivative of the activation function
computed on the net in a certain time instant, as it is easy to
prove by chain rule.

Only the formulas which are different from those corre-
sponding to the activation feedback MLN are reported here.
The forward formulas are now replaced by

(1 )

(2 ).
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As for the IIR-MLP it holds

(9 )

The coefficient variations are now computed using the deriva-
tives expressed by

(15 )

(16 ).

The derivatives used in the backpropagation are now computed
as

if
otherwise

(21 ).

As for the previous case, also for output feedback MLN,
BPS learning algorithm is obtained, as particular case, if the
architecture is constrained to have dynamic units only in the
first layer.

C. Autoregressive MLP

The main difference with all the previous cases is that
now the chain rule expansions are more easily written with
respect to the neuron outputs instead of the net quantities.
This is because the AR memory is not included in thenet, see
Fig. 3(e). So delta’s are not useful anymore and they will be
replaced by the backpropagating errors. The forward formulas
are now replaced by

(1 )

sgm (2 ).

The coefficient variations are expressed by

(12 )

Similarly for the weights we have

(14 )

The coefficient variations are now computed using the deriva-
tives expressed by

(15 )

(16 )

The backpropagation is now

for

for

(20 )

where the derivatives are computed as

if
otherwise

(21 )
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Italy, Feb. 1994 (in Italian).

[22] S. Haykin, Neural Networks: A Comprehensive Foundation.New
York: IEEE Press, 1994.

[23] J. Schmidhuber, “A fixed size storageO(n3) time complexity learning
algorithm for fully recurrent continually running networks,”Neural
Comput.,vol. 4, pp. 243–248, 1992.

[24] B. A. Pearlmutter, “Gradient calculations for dynamic recurrent neural
networks: A survey,”IEEE Trans. Neural Networks,vol. 6, Sept. 1995.

[25] B. Srinivasan, U. R. Prasad, and N. J. Rao, “Backpropagation through
adjoints for the identification of non linear dynamic systems using
recurrent neural models,”IEEE Trans. Neural Networks,pp. 213–228,
Mar. 1994.

[26] E. A. Wan, and F. Beaufays, “Diagrammatic derivation of gradient
algorithms for neural networks,”Neural Comput.,vol. 8, pp. 182–201,
1996.

[27] K. S. Narendra and K. Parthasarathy, “Gradient methods for the op-
timization of dynamical systems containing neural networks,”IEEE
Trans. Neural Networks,vol. 2, Mar. 1991.

[28] , “Identification and control of dynamical systems using neural
networks,”IEEE Trans. Neural Networks,vol. 1, pp. 4–27, Mar. 1990.

[29] G. V. Puskorius and L. A. Feldkamp, “Neurocontrol of nonlinear
dynamical systems with Kalman filter-trained recurrent networks,”IEEE
Trans. Neural Networks,vol. 5, pp. 279–297, Mar. 1994.

[30] C.-C. Ku and K. Y. Lee, “Diagonal recurrent neural networks for
dynamic systems control,”IEEE Trans. Neural Networks,vol. 6, Jan.
1995.

[31] O. Nerrand, P. Roussel-Ragot, L. Personnaz, G. Dreyfus, and S. Marcos,
“Neural networks and nonlinear adaptive filtering: Unifying concepts
and new algorithms,”Neural Comput.,vol. 5, pp. 165–199, 1993.

[32] B. De Vries and J. C. Principe, “The gamma model—A new neural
model for temporal processing,”Neural Networks,vol. 5, pp. 565–576,
1992.

[33] M. A. Motter and J. C. Principe, “A gamma memory neural network for
system identification,” inInt. Conf. Neural Networks,pp. 3232–3237,
1994.

[34] S. P. Day and M. R. Davenport, “Continuous-time temporal backpropa-
gation with adaptable time delays,”IEEE Trans. Neural Networks,vol.
4, Mar. 1993.

[35] D.-T. Lin, J. E. Dayhoff, and P. A. Ligomenides, “Trajectory production
with the adaptive time-delay neural network,”Neural Networks,vol. 8,
no. 3, pp. 447–461, 1995.

[36] F. Beaufays and E. Wan, “Relating real-time backpropagation
and backpropagation-through-time: An application of flow graph

interreciprocity,”Neural Comput.,vol. 6, pp. 296–306, 1994.
[37] A. D. Back, E. Wan, S. Lawrence, and A. C. Tsoi, “A unifying view

of some training algorithms for multilayer perceptrons with FIR filter
synapses,” inProc. IEEE Workshop Neural Networks Signal Processing,
pp. 146–154, 1994.

[38] B. A. Pearlmutter, “Two new learning procedures for recurrent net-
works,” Neural Networks Rev.,vol. 3, no. 3, pp. 99–101, 1990.

[39] B. G. Horne and C. L. Giles, “An experimental comparison of recur-
rent neural networks,” inAdvances in Neural Information Processing
Systems, vol. 7. Cambridge, MA: MIT Press, 1995, p. 697.

[40] J. L. Elman, “Finding structure in time,”Cognitive Sci.,vol. 14, pp.
179–211, 1990.

[41] M. C. Mozer, “A focused backpropagation algorithm for temporal
pattern recognition,” Univ. Toronto, Canada, Tech. Rep. CRG-TR-88-3,
1988; Complex Syst., vol. 3, pp. 349–381, 1989.

[42] S. Santini, A. Del Bimbo, and R. Jain, “Block-structured recurrent neural
networks,”Neural Networks,vol. 8, no. 1, pp. 135–147, 1995.

[43] T. C. Hsia, “A simplified adaptive recursive filter design,”Proc. IEEE,
vol. 69, Sept. 1981.

[44] R. R. Leighton and B. C. Conrath, “The autoregressive backpropagation
algorithm,” in Proc. Int. Joint Conf. Neural Networks,pp. 369–377,
1991.

[45] H.-U. Bauer and T. Geisel, “Dynamics of signal processing in feedback
multilayer perceptrons,” inProc. Int. Joint Conf. Neural Networks,1990,
pp. 131–-136.

[46] D. H. Nguyen and B. Widrow, “Neural networks for self-learning control
systems,”IEEE Contr. Syst. Mag.,pp. 18–23, Apr. 1990.

[47] J. Schmidhuber, “Learning complex, extended sequences using the
principle of history compression,”Neural Comput.,vol. 4, no. 2, pp.
234–242, 1992.

[48] B. Widrow and M. A. Lehr, “30 years of adaptive neural networks:
Perceptron, madaline, and backpropagation,”Proc. IEEE, vol. 78, pp.
1415–1442, Sept. 1990.

[49] R. J. Williams and D. Zipser, “Experimental analysis of the real-time
recurrent learning algorithm,”Connection Sci.,vol. 1, no. 1, pp. 87–111,
1989.

[50] M. I. Jordan, “Attractor dynamics and parallelism in a connectionist
sequential machine,” inProc. 8th Annu. Conf. Cognitive Sci. Soc.,1986,
pp. 531–546.

[51] F. Pineda, “Generalization of Backpropagation to recurrent neural net-
works,” Phys. Rev. Lett.,vol. 59, no. 19, pp. 2229–2232, Nov. 9,
1987.

[52] L. B. Almeida, “A learning rule for asynchronous perceptrons with
feedback in combinatorial environment,” inProc. Int. Conf. Neural
Networks,1987, vol. 2, pp. 609–618.

[53] R. J. Williams and D. Zipser, “Gradient-based learning algorithms for
recurrent networks and their computational complexity,”Backpropa-
gation: Theory, Architectures and Applications,Y. Chauvin and D. E.
Rumelhart, Eds. Hillsdale, NJ: Lawrence Erlbaum, 1994.

[54] T. Uchiyama, K. Shimohara, and Y. Tokunaga, “A modified leaky
integrator network for temporal pattern recognition,” inProc. Int. Joint
Conf. Neural Networks,vol. 1, pp. 469–475, 1989.

[55] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”Neural
Comput.,vol. 9, no. 8, pp. 1735–1780, 1997.

[56] A. J. Robinson and F. Fallside, “The utility driven dynamic error prop-
agation network,” Cambridge Univ. Eng. Dept., Tech. Rep. CUED/F-
INFENG/TR.1, 1987.

[57] E. A. Wan, “Adjoint LMS: An efficient alternative to the filtered-XLMS
and multiple error LMS algorithms,” inProc. IEEE Int. Conf. Acoust.
Speech Signal Processing,Atlanta, GA, May 1996.

[58] M. C. Mozer, “Neural net architectures for temporal sequence process-
ing,” Predicting the Future Understanding the Past,A. Weigend and N.
Gershenfeld, Eds. San Mateo, CA: Addison-Wesley, 1993.

[59] P. Campolucci, “Signal flow graph approach to gradient calculation and
learning: Forward computation,” Univ. Ancona, Italy, Dip. Elettronica
ed Automatica, Tech. Rep., 1996.

[60] , “Signal flow graph approach to gradient calculation and learning:
Backward computation,” Univ. Ancona, Dip. Elettronica ed Automatica,
Tech. Rep., 1996.

[61] P. Campolucci, A. Uncini, and F. Piazza, “Dynamical systems learning
by a circuit theoretic approach,” inProc. ISCAS-98, IEEE Int. Symp.
Circuit Syst.,Monterey, CA, June 1998.

[62] P. Campolucci, “Learning algorithms for recurrent neural networks,”
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