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Abstract—This paper focuses on on-line learning procedures 1
for locally recurrent neural networks with emphasis on mul- y
tilayer perceptron (MLP) with infinite impulse response (IIR)
synapses and its variations which include generalized output and

activation feedback multilayer networks (MLN’s). We propose a

new gradient-based procedure called recursive backpropagation Multi Layer Perceptron
(RBP) whose on-line version, causal recursive backpropagation

(CRBP), presents some advantages with respect to the other b

on-line training methods. The new CRBP algorithm includes
as particular cases backpropagation (BP), temporal backprop- X x{t1]] ... x[tn]
agation (TBP), backpropagation for sequences (BPS), Back—Tsoi x[j—*{___ Tapped Delay Line |
algorithm among others, thereby providing a unifying view on

gradient calculation techniques for recurrent networks with local  Fig. 1. Buffered multilayer perceptron with input buffer.

feedback. The only learning method that has been proposed for

locally recurrent networks with no architectural restriction is the

one by Back and Tsoi. The proposed algorithm has better stability inputs, or the use of feedback. In both approaches, an arbitrary
and higher speed of convergence with respect to the Back-Tsoijnpyt (z[t]) may influence a future outpu/[t + %]), so that

algorithm, which is supported by the theoretical development and :
confirmed by simulations. The computational complexity of the (0y[t+]/0xt]) is not equal to zero for somde In the case of

CRBP is comparable with that of the Back—Tsoi algorithm, e.g., @Symptotic stability this derivative goes to zero whegoes
less that a factor of 1.5 for usual architectures and parameter set- to infinity. The value ofh for which the derivative becomes

tings. The superior performance of the new algorithm, however, negligible is calledtemporal depth whereas the number of

eaSIly JUStIerS this small increase in Computationa| burden. In adaptable parameters d|v|ded by the temporal depth |S Ca”ed
addition, the general paradigms of truncated BPTT and RTRL temporal resolution32]

are applied to networks with local feedback and compared with . : . . .
the new CRBP method. The simulations show that CRBP exhibits 1 n€ first kind of dynamic network is a buffered multilayer

similar performances and the detailed analysis of complexity perceptron (MLP) in which tapped delay lines (TDL's) of the
reveals that CRBP is much simpler and easier to implement, e.g., inputs are used. The buffer can be applied at the network

CRBP s local in space and in time while RTRL is not local in  jnpyts only, keeping the network internally static as in buffered
space. MLP’s [22] (see Fig. 1), or at the input of each neuron as
~ Index Terms—HR-MLP, locally recurrent neural networks, on-  in MLP with finite impulse response (FIR) filter synapses
line learning, recursive backpropagation, system identification, [FIR-MLP, see Fig. 3()] [3], [8], [11], [22], [37] often called
time-delay neural networks. . . .
time-delay neural network (TDNN) [9], [10] and in adaptive
time-delay neural networks [34], [35]. It is well known that
I. INTRODUCTION buffered MLP and FIR-MLP can be shown to be theoretically

RECENTLY dynamic recurrent neural networks have beeerguivalent [8] since internal buffers can be implemented as

attracting much attention from the scientific communitd" €xtérnal one. The problem with implementing FIR-MLP's
as buffered MLP’s is that first layers sub networks must be

replicated (with shared weights) [8] and so the complexity is
uch higher than considering the buffer internal. Therefore

(see the special issue of IEEERANSACTIONS ON NEURAL
NETWORKS March 1994, and oNeurocomputingJune 1997)

because they can be very useful for temporal processing,

e.g., digital signal processing (DSP), system identification ap ffered MLP a”‘?' FIR-MLP are different grch!tectures with
control, and temporal pattern recognition. regard to a real implementation. The main disadvantage of

Two main methods exist to provide a static neural netwome buffer approach is the limited past history horizon thereby

with dynamic behavior: the insertion of a buffer somewhere ff€venting modeling of arbitrary long time dependencies [20],

the network, i.e., implementing an explicit memory of the paggl], [55] between inputs and desir_ed outputs. It_is also _diffi_cult
to set the length of the buffer given a certain application;
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Fig. 2. Buffered multilayer perceptron with input and output buffers, some-
times called Narendra Parthasarathy or NARX neural network.
1
N
Recently a new buffer type called gamma memory has P
been proposed by Principet al. [32], [33], for which the ‘TJ OUTPUT
delay operator, used in conventional TDL's, is replaced by a ¢

single pole discrete time filter. Gamma memory is a dispersive
delay line with dispersion regulated by an adaptable parameter,
so that it is possible to adaptively trade off temporal depth (b)
with temporal resolution. In addition to these advantages of
temporal depth and resolution characteristics, it is known that
neural networks with feedback have useful dynamic modelingy
behavior [40], [41]. P

The main example of implementation of feedback is the"
classical fully recurrent neural network, i.e., a single layerg
of neurons fully interconnected with each other [1], [2],
[5], [22], [24], [31], [39], [42], [49], [51], [52], or several
such layers [29]. Such recurrent networks however exhibit (c)
some well known disadvantages: a large structural complexity
(O(n?) weights are necessary farneurons) [30] and a slow
and difficult training, e.g., [4]. In fact they are very general N
architectures which can model a large class of dynamicaP
systems, but on specific problems simpler dynamic neural
networks which make use of available prior knowledge cang
be better [21], [41].

In the past few years, a growing interest has been devoted to
methods which allow introduction of temporal dynamics into @
the multilayer neural model. In fact the related architectures
are less complex and easier to train with respect to the fully
recurrent networks. The major difference among these methdds
lies in how the feedback are included in the network. P FIR

Externally: As in the Narendra—Parthasarathy MLP [28}# x{1)
also known as NARX network, where TDL'’s are used for thg Fin
outputs that feedback to the input of the network (see Fig. 2), FIR
and in the Elman’s network [40].

Internally: Inside each neuron. ©

The latter approach brings us to the so called locally recurg- 3- Model of the neuron for: (a) FIR-MLP, (b) IIR-MLP, (c) locally

, . recurrent activation feedback MLN, (d) output feedback MLN, and (e) auto
rent neural networks (LRNN'’s) or local feedback multllaye;regressive MLP.
networks (LF-MLN) [4], [18]-[20], [58]. In these structures,
classical infinite impulse response (IIR) linear filters [13], here
called also autoregressive moving average (ARMA) modelayer network studied by Frascoet al. [18]-[21]. The output
are used either directly or with some modifications. Differertf the neuron summing node is filtered by an autoregressive
architectures arise depending on how the ARMA model {#\R) adaptive filter (all poles transfer function) before feeding
included in the network. the activation function; in the most general case the synapses

The first architecture is the IIR-MLP proposed by Baclare FIR adaptive filters [see Fig. 3(c)]. The activation feedback
and Tsoi [3], [4] where static synapses are substituted byultilayer network is a particular case of the IIR-MLP, when
conventional IR adaptive filters [see Fig. 3(b)]. The secorall the synaptic transfer functions of the same neuron have the
architecture is the activation feedback locally recurrent multame denominator.

OUTPUT

OuUTPUT

OUTPUT
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The third structure is the output feedback locally recurre®ome algorithms to train such networks exist, although a
network proposed by Gost al.[18]-[21]. In this architecture comprehensive framework is still missing.
the IIR filter is not simply placed in the classical neuron In this paper we propose a new gradient-based algorithm
model but is modified to make the feedback loop pass throufgi locally recurrent neural networks, called recursive back-
the nonlinearity, i.e., the one time step delayed output of tipgopagation (RBP) whose on-line version, causal recursive
neuron is filtered by a FIR filter whose output is added thackpropagation (CRBP) presents some advantages with re-
the inputs contributions, providing the activation. Again in thepect to the already known on-line training methods. The new
general model the synapses can be FIR filters [see Fig. 3(dJRBP algorithm includes as particular cases backpropagation

The work of Goriet al. has its foundation in the work by (BP) [5], [48] temporal backpropagation (TBP) [8], [22]
Mozer [41] in which the main idea was the introduction obackpropagation for sequences (BPS) [18], [19] and Back—Tsoi
context units to include memory in a network, substitutinglgorithm [3], [12]. Moreover it allows for the training of
the spatial metaphor of the external buffer (common at th@eneralized output and activation feedback MLN'’s which
time) with the recurrent context approach, as also suggesf@&ye no constraint on the position of the dynamic units,
by Elman in [40]. Context units are dynamic recurrent neurofi§plementing communications among them, as suggested in
placed in the first layer to process the input signals while tté1] and [47] for a better modeling.
following layers are supposed to be static. This architectural The concepts detailed in this paper were developed in [62]
constraint also used in the works of Getial. has been chosen@nd later presented in [63].
basically to simplify the learning phase. The outline of this paper is as follows. Section Il reports an

At last, there is another architecture [see Fig. 3(e)] that h@¥erview of gradient-based learning algorithms for locally re-
not been studied as the previous ones: it was proposed qg,syrent networks. Section I_II gives the complete_formulf_;ltlon of
Mozer in [41] (with one delay feedback dynamic units in thé"€ batch mode RBP algorithm for lIR-MLP, while Section IV
first layer only) and by Leighton and Conrath in [44] (mummé)resents the on-line version, CRBE. Expgrlmental resglts of
delays and no restriction on the position of dynamic units). if€ Proposed method are reported in Section V. In Section VI
is again a multilayer network where each neuron has FIR filtdf€ discuss issues related to the computational complexity and
synapses and an AR filter after the activation function (ARTIPIementation of the new algorithm. The extension of the
MLP). It is easy to see that this network is a particular ca&BP to the pther locally recurrent architectures is reported in
of the IIR-MLP, followed by linear all-pole filters. the Appendix.

Recently diagonal recurrent neural networks (DRNN) [30],
have been proposed for dynamic systems control, claiming I
relevant results. This architecture is also a particular case of
output feedback MLN since DRNN is a two-layer network i ) )
with static linear output neurons and dynamic hidden neurons/ntérnally static networks can be trained by the simplest
with static synapses but with one delay feedback from tffgorithms: for the buffered MLP of Fig. 1 with only input
output. Again the position of dynamic units is restricted to tHeuffer (with no recursion) the standard BP should be used,
first layer only. while for the Narendra—Parthasarat_hy n.etwork shown in Fig. 2

Another version of locally recurrent neural network wad1® SO called “open-loop™ approximation [45], [S0] of the

presented in [54] with a biological motivation: a multilayeStandard BP is usually employed. It consists in opening the
connection of perceptrons with low-pass temporal filtering & op during the bgckward phase, feeding the network with the
the activation. esired outputs instead of the true network outputs. In IIR

; daptive filter theory this is the equation error approximation
Th dvant 4], [20], [21], [30], [40], [41], [58]2 .
e major advantages [4], [20], [21], [30], [40}, [41], [ ]%l:thetrue output error approach [13], in neural-network theory

. GRADIENT-BASED LEARNING ALGORITHMS
FOR LOCALLY RECURRENT NEURAL NETWORKS

of locally recurrent neural networks with respect to buffere

MLP’s or fully recurrent networks can be summarized at

follows:

is is the teacher forced technique [2].
Extension of Back propagation to recurrent networks was
) ) ) first proposed in [5], [51], [52]. Pineda and Almeida [51], [52]

1) well-known neuron interconnection topology, i.e., thgqyereqd only the case when the recurrent network behavior re-
efficient and hierarchic multilayer; _ laxes to a fixed point. However, if a general temporal process-

2) small number of neurons required for a given problen,, is needed, two main gradient-based learning approaches
due to the use of powerful dynamic neuron models; gyist for recurrent networks [24], [25], [36]: Backpropagation

3) generalization of the popular FIR-MLP (or TDNN) tothrough time (BPTT) [1], [5], [7], [24], [36], [46] and real-time

the infinite memory case; _ ~ recurrent learning (RTRL) [2], [23], [24], [27], [28], [36], [38],
4) prewired forgetting behavior [20], needed in apphcatlorlgfg], [56]. The algorithm in [23] is an hybrid method.

such as DSP, system identification and control; BPTT is a family of algorithms which extends the BP
5) simpler training than fully recurrent networks; paradigm to dynamic networks. There are two main points of
6) many training algorithms could be derived from filtefew to understand the BPTT algorithm. The first is an intuitive

theory and recursive identification. one: time unfolding of the recurrent network, i.e., for single

In the following we will consider only locally recurrent neurallayer single feedback delay fully recurrent networks one can
networks, particularly IIR-MLP and output feedback MLNthink of the network state at timeas if it was obtained from
which are the most general and interesting architecturdise tth layer output of a multilayer network with layers [5],
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whereT is the length of the sequence. The other point of vieloth in time and in space, computationally simple and with
is a mathematical one and it is based on the Werbos thesmall memory requirement; in fact it is only slightly more
of ordered derivatives [6]. Werbos provided a mathematicabmplex than standard BP. However it can be applied only
tool to rigorously compute the derivatives of a certain variabte LF-MLN with no dynamic units in layers other than the
with respect to another one in complex structures describedfbgt one. BPS basically is the classical backpropagation on the
ordered mathematical relations (for example a neural network)ultilayer network with a recursive computation only inside

Actually, with ordered derivatives it is possible to deriveeach dynamic neuron. Due to the architectural constraints,
both BPTT and RTRL algorithms in the same framework [25this algorithm does not implement backpropagation through
[36]. The difference between BPTT and RTRL is in how tha dynamic structure.
chain rule derivative expansion is applied. More specifically, The same approach was proposed by Mozer in [41] indepen-
during the learning phase, in BPTT the neural network dently deriving a similar algorithm named focused backpropa-
computed backward both in the layer and time dimensiorgation for a particular AR-MLP. BPS was rediscovered in [30]
whereas in RTRL it is calculated forward (as in the forward/here it was derived for a structure that is a particular case
calculation). Reversing the signal flow graph provides the grezt the output feedback LF-MLN and was applied to control
efficiency of BPTT, but the necessary reversion of time makpsoblems with good results.
it noncausal even when there is only one delay present insidén [3] and [12], a learning algorithm for IIR-MLP, Fig. 3(b),
the network (i.e., after an adaptable parameter in the sigmeds proposed by Back and Tsoi. It is similar to BPS, imple-
flow graph) [26]. menting both a backpropagation and a recursive computation,

Therefore BPTT is local in space but not in time, anBut without any architectural restriction. However, to avoid
is computationally simple but is noncausal; so it can kaynamic backpropagation, they propose using static backprop-
implemented only in batch mode. For on-line adaptaticegation even through a dynamic neuron.
some approximations are needed, namely causalization anénalogous learning algorithms are also: autoregressive BP
truncation of past history, as explained in [1], [40], and [53)roposed by Leighton and Conrath [44] for the AR-MLP,
for fully recurrent neural networks. and the algorithm in [54]. They are equivalent to Back—Tsoi

On the other hand, RTRL is local in time but not in spacalgorithm since they also use instantaneous backpropagation
computationally complex but intrinsically on-line. RTRL alsovithout implementing the full backpropagation through a
implements an approximated calculation of the gradient if tlynamic unit. So in the following of the paper we will call
parameters are continually adapted since the true derivatBack—Tsoi algorithm the method with instantaneous backprop-
would require constant weights [1], [53]. agation and we will not refer anymore to the works in [44]

In [53], Williams and Zipser report better performance andnd [54].
convergence rate for truncated BPTT than RTRL and explainThe on-line algorithm proposed in this paper, i.e., CRBP,
this result stating that the history truncation approximation cavhose basic ideas were presented in [16] and [17], implements
be better than the approximation implemented in RTRL. and combines together BPTT and RTRL paradigms for locally

Recently Wan and Beaufays [26] proposed a simple methmeturrent networks. It works with the most general locally re-
to derive BPTT for discrete time dynamic neural networksurrent networks and implements a more accurate computation
composed of a general interconnection of weights, delays,the gradient than the Back—Tsoi method. While Back—Tsoi
additive units, differentiable nonlinearities. This derivation caalgorithm uses an instantaneous error as cost function, the
be carried out with simple transformations of the signal floRBP algorithm can minimize the global error; this fact
graph of the network itself; however the algorithm derived iresults in an improved stability of the algorithm. The name
this way is always noncausal and the authors did not addréisat we use, i.e., causal recursive backpropagation (hot to
the question of on-line learning for networks with feedbacke confused with recurrent backpropagation [51], [52]) was
Recently a new approach was derived based on signal flohosen to remember the dual nature of the algorithm: BPTT
graphs that makes this derivation of both RTRL [59] anstyle formulas are used to backpropagate the error through the
truncated BPTT [60], [61] feasible but a detailed discussion ieurons and recursive computation of derivatives inside each
beyond the aim of the paper. neuron is implemented to calculate weights variations.

Most of the above methods were studied for general fully It is well known that RTRL and BPTT approaches are
recurrent networks. On the other side several on-line learniaguivalent in batch mode operation [36]: they compute the
algorithms have been presented for specific dynamic mulsame weights variations using different chain rule expansions.
layer neural networks, most of the times with no reference 8nce CRBP uses another expansion of the same derivatives, it
each other and to the general paradigms. becomes equivalent to them when used in batch mode (RBP).

In [8] a learning algorithm, named temporal backpropag&ince BPTT is computationally simpler than RTRL or RBP
tion, was proposed by Wan. This is an on-line version of theis the algorithm of choice working in batch mode, unless
batch mode BPTT approach [26]. However, it can only bilie memory requirement is an issue. In this case RTRL can
applied to the nonrecurrent FIR-MLP [Fig. 3(a)]. be preferred since for long sequences it requires less memory

Backpropagation for sequences (BPS) is a learning algsee Section VI).
rithm proposed by Goriet al. [18], [19], [21], [24], [38] However the three methods are not equivalent in on-line
both for output and activation local feedback MLN’s (LF-mode. In this case truncated BPTT must be considered instead
MLN’s), Fig. 3(c) and (d). It is interesting because it is locabf BPTT and CRBP instead of RBP. It must be stressed that
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in CRBP each local feedback of a certain neuron is taken into
account with no history truncation (necessary for truncatefis Wi
BPTT) for the adaptation of the coefficients of the same
neuron, using recursive formulas instead of noncausal ongs
as in the truncated BPTT approach. ® (]

In other words, the RBP algorithm computes exact gradient,
is not local in time (like BPTT) but has the advantage
that it can be efficiently implemented on-line (CRBP) at
approximately the same cost, with a parameter that controls the
tradeoff between exactness of the gradient and computational
time. With respect to RTRL the proposed CRBP algorithm has
the advantage of being local in space and in time while RTRL
is not local in space.

A reasonable and standard definition of locality is the fokhown).
lowing. An algorithm is local in space if the update complexity
per time step and weight does not depend on network size.

A method is local in time if its storage requirements do

not depend on input sequence length. In fact the proposeq;gr)n -1
algorithm CRBP is “quasi” local in space, meaning that this
property is satisfied asymptotically if the number of neurons
increases. This is due to the fact that the complexity is ,«)
linear with the number of coefficients to be adapted at the "™
network level while is quadratic at the neuron level, since the
computation is locally (i.e., inside the neuron) recursive, i.e., @

of RTRL type.

Of course the gradient calculation techniques developed in
this paper can be implemented in second-order methods such
as conjugate gradient or Kalman filter based algorithms [29],
but this is beyond the aim of the paper. N

In the following section the recursive backpropagation batch "%
learning algorithm and its on-line version are derived for the
MLP with IR synapses; the formulas for LF-MLN’'s and
AR-MLP are in the Appendix.

nm(p)

weight
sgm(z)
sgm’(2)
Ill. THE RECURSIVE BACKPROPAGATION Ur(Llr)n[t]

ALGORITHM FOR MLP wiTH IR SYNAPSES :

An 1IR-MLP contains in each synapse a linear filter with
poles and zeros, which are the AR and moving average (MA)S;I)[t]
part, respectively. Due to the complexity of the resulting
structure, a rigorous notation is needed, where each index is
explicitly written. This notation, which is a generalization of d,[t]
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Fig. 4. A simple example of IIR-MLP network (the bias terms are not

2 = 1. Note thatz’[], n = 1, ---, Ny, are
the input signals.

Order of the MA part of the synapse of th¢h
neuron of thdth layer relative to thenth output
of the (I — 1)th layer. L), > 1 andef()J =1
Order of the AR part of the synapse of thth
neuron of thdth layer relative to thenth output
of the (I — 1)th layer. 1, > 0 andI,(fg =0.
(p=0,1,---, Lﬁf,)n—l) coefficients of the MA

part of the corresponding synapseLlf,)n =1,
the synapse has no MA part and the weight
notation becomes{),. w% is the bias.
p=1,---, I,(,,l,),,,) coefficients of the AR part

of the synapse. ILS,I,),,, = 0 the synaptic filter is
purely MA.

Either aw or v coefficient.

Activation function.

Derivative of sgimn(>2).

Synaptic filter output at time relative to the
synapse ofith neuron/th layer, andnth input.
yffg = w,(f()) is the bias.

“Net” quantity relative to thenth neuron of
the lth layer at timet, i.e., the input to the
corresponding activation function.
(n=1,---, Nj) desired outputs at time

that used in [48] for static MLP and in [8] and [11] for FIR- To further clarify the notation, a simple two-layet/(= 2)

MLP, is appropriate in this case where complex architecturﬁﬁ_MLP with two inputs (Vo

of different kinds are defined and compared.

= 2), one hidden neuron

(V1 = 1) with no MA and AR parts in each synaps@éﬁ =1
andIS,)l = 0 for m = 1, 2) and one output neuromg = 1)

A.Eotaﬂon Number of | i th awork vv(it)h both MA and AR parts in the synapseﬁﬁ) =3 and
umber of layers in the network. 2) _ ; P—
l Layer index. In particulai = 0 and! = M L’ = 2). is shown in Fig. 4.
denote the input and output layer, respectivelyg The Forward Phase
N Number of neurons of thih layer. In particular ) .
Ny and Ny, denote the number of inputs and The_ forward_phase at timeé can be described by the
outputs, respectively. following equations evaluated fdr = 1, ---, M andn =
n Neuron index. Loy N
t Time index,t = 1,2, ---, T, whereT is the 4 —1 S
length of the training sequence. uD= > wffr)n(p)xﬁfl—l)[t —pl+ > vffr)n(p)y,(f)n[t — ]
2P [t] Output of thenth neuron of théth layer, at time p=0 p=1
t. In particularn = 0 refers to the bias inputs: 1)
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i1 Therefore, using gradient descent method and the chain rule

sOf = 3 vl 2P = sem(sP14)- (2) expansion
m=0
T
For (1), the direct form | of the IIR filter has been used, u IE? __h Z E2 951 [t] (10)
[13], but other structures are possible. In particular, direct nm(p) = 2 g ) 2 & ] w® )
nmip = nmip

form 1l structures allow reduction in the storage complexity
as well as in the number of operations, both in forward arwhere 4 is the learning rate.

backward computation (see Section VI). For the sake of clarity The above equation can be rewritten as
the expression corresponding to (1) in the IIR filter usual

notation [13] is reported ) O

[13] s p N Awl) = 2 Awy) S[E+1] (11)

ylt] = 2) wp[t]x[t —p] + Z Mt —r1 B Lhere
e
O]
wherey([t] is the output,z[t] the input of the IIR filter,w are Aw®  pa]=- b OE*  Osy [t]
the coefficients of the MA part; of the AR part,A/ — 1 and n() 2 959[1] 8wffm(p)
N — 1, respectively, the orders of the MA and AR parts, that 50
can also be written IIMSS) [t] 3(+)[t] (12)
B t, q awnrn
ylt] = <#(t))>$ [t] 4) @
1 4 Similarly for the v weights we have
where
N-1 M—1 A = A [t+1 13
- Z wltlg™? and B(t, q) = Z wy[t]g™P nrn(p) Z vnm(p) +1] (13)
p=1 p=0
(5) where
-1 eu—i st — st — i as[t
whereq~" is the delay operator, i.eqs[t] = st — j]. ' Aw fw)n(p)[tJF 1] = 1O il U (14)
In this case the dependence of the coefficients upon time avnm(p)

is explicitly stated with the index, since we are considering

adaptive filters that are adapted every time step. However,ERpressions to comput&,’[¢] and the derivatives in (12) and
the neural network in order to reduce the complexity of th@4) must be provided.

notation we will not use the explicit indication of time. Differentiating 1) and conS|der|ng that
_ _ (9sP[t] /8waghtnm( )= (Oyim[/Oweight!) ),
C. The Learning Algorithm (RBP) where “weight” indicates eitherw or v, we get g
The instantaneous global squared error at tinsadefined as ®
" CEAORSINEI SNURCE RS
21,1 — 2 ; _ _ (D 0} m o nm(r) 0}
Al = z_:l ] with e,[t] = da[f] — 200, (6) ouwd — ouwd
~ - : ® ),
So the global squared error over the whole training sequence is 83(,;) [t] O -4 Z Ufllr)n(1 ast (l) — 7] (16)
T avnrn(p) nrn(p)
E* =3 Y] _ _
= Note that such expressions are the same found in the IIR linear
wherel’ is the duration of the sequence. adaptive filter theory [13, (16a), (16b)]
In the _most general case, the_training set of a_d_ynamic neural ay[t] N-1 Ayt — 7]
network is composed of a certain number of training sequences o, —p]+ Z 0
(runs), and so the error to be minimized is the stat|st|cal ?
average of the erroE? over all the runs. To simplify the ©
Iylt] 1
notation we will consider only one run but the extension is = z[t — p (17)
straightforward. dwy, 1—A(t, q)
Let us define the usual quantitiebdckpropagating errdr aylt] fhly Iyl
and ‘delta’ v, =ylt-pl+ 3 v
1 9E? 1 9E? =
W=y 20 and s0i=—3 20 @
202014 295V oylt] _ < 1 ) Jlt - 1] (18)
As in the static case, it holds vy 1-A(t. q)
O — Ofeom { <O where the weights time index is not explicitly written to avoid
0t = e [t]semm (8" [t])' ©) notational clutter.
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The formulas (15) and (16), as in the IIR linear adaptivehere the operatar—! now is delaying the index and not the
filter context, are exactly true only if the weights br v) are ¢ index, h[p] is the impulse response of the filter addt, ¢),
not time-dependent, because the derivatives evaluation pgirgviously defined, does not depend bnObviously, if the
is fixed, or approximately true if they adapt slowly, i.e., thélter is time invariant, the derivative does not dependton
learning rate is sufficiently small [2], [13]. In batch RBP thd his means that the derivative is obtained through AR filtering
weights update is performed only at the end of the learnigg the sequence of the coefficients of the MA part with the AR
epoch using the accumulated weight variations computed gt of the corresponding IIR synaptic filter. This is true since
every time instant, so that the above expressions are exact #Hdhe causal filter the derivative inside the summation is zero
can be computed iteratively starting with null values of théé 7 > p, allowing the upper limit of the summation in (21) to
initial derivatives. be written also asl(“’l) If the learning rate is small enough,
Now we want to denve an expression f@([l) [t]: by (9) we also when on-line adaptation is performed the derivative is
need to compute " []; using the chain rule it is possible toSIOWly changing in time, i.e., with theindex in (21).

obtain Therefore, for MLP with IIR synapses, (20) suggests that
1 9E2 each back propagating error at layés a summation of all the
cg)[t] = 5 0m delta’s at the following layer filtered by the noncausal version
O [t] of the respective IR filter, i.e., filtering by the time reverted
W1 aE? astYR impulse response of the synaptic filter.
=22 oo o forl<M.  The expressions (1), (2), (9), (11)~(16), (20), and (21)
g=1 k=1 9s [k] Ozn[1] constitute the RBP algorithm for IIR-MLP. Note that, if all the

(19) synapses contain only the MA pati[ff(% = 0 for eachn, m,
By the last expression, under the hypothesis of IIR synap#ad!), the architecture reduces to FIR-MLP and this algorithm
filter causality, the internal summation can start frém= t. reduces to the temporal backpropagation (TBP; batch mode)
Then changmg the variables As-t — p, using the definition as in [8], [11], [22], [37] Obviously, if all the synaptic filters
of 5[] and considering that fof = M the derivative can have no memory I, = 0 and L{), = 1 for eachn, m,
be directly computed, the backpropagation through the lay@®d!), this algorithm gives standard Back propagation (batch

can be derived adaptation) for the MLP. Moreover the on-line versions of
enlt] fori=M TBP and BP are obtained as particular cases of CRBP.
News T—t Fig. 5 shows the diagram of the RBP applied to the simple
eg)[t] - Z Z(Sg’“)[t—i- ]8yqn [t ‘i‘p]7 (20) IIR-MLP example of Fig. 4, with a simplification of the re-
po o aa;g)[t] cursive computation of derivatives, as explained in Section VI.
forl=(M-1),---,1 These are the steps of the algorithm for each learning epoch:
where the partial derivatives are computed using (1) * perform forward pass for the entire input sequence saving
I+1 ] the states of the network at all times, using (1) and (2);
w — <{ w;z;?;;’ if0<p< Lglrjrl) - 1) « start the backward pass computing the error for all the
oz 1] 0, otherwise outputs and time instants;
min(I{, p) « compute the derivatives in (21) iteratively with null initial
n Z LD 3yqn [t +p—] . conditions;
= fan() ar[t] s for { = M to one
(21) computee(l)[t] by (20)Vt € [1, T];
These derivatives have a very interesting interpretation. Con- computeé,(,,l)[t] by Q) Vte 1, T];
sider the expression of a generic causal linear filter output as ~ — compute the weights variations using (£1]1.6);
the convolution of the input:[r] with an impulse response — update weights.

h[t, 7] (in general time variant case)
t

Since the RBP recursive expressions (15), (16), and (21)
have the same feedback coefficients as the corresponding

ult] = Zt: wlrhlt, 7] (22) IIR filter in the forward expression (1), the learning algo-
: T . - rithm calculation will be stable if all the IIR filters are
wheret, is the initial time instant. Differentiating we get stable
Ayt '
M — W[t +p, 1]. 23)
«[t] IV. THE ON-LINE RBP ALGORITHM

If the learning algorithm updates the coefficients only at the CAUSAL RECURSIVE BACKPROPAGATION (CRBP)
end of the epoch (batch mode adaptation), then the IIR filter

o . i As previously stated, the RBP algorithm is used only as an
is time invariant and

intermediate step in the derivation of CRBP. In fact, as shown

<ﬁ) <{ (T)Upv gtr?e?vﬁsge M - 1) by (20), the exact RBP algorithm is noncausal, sincectfle
— At 9) ’ at timet depends on thé(“’l) guantities, taken at future time
— Y[t + 1] =h[t+p—1] = h[p| (24) instants. Therefore the welghts update can only be performed

Ox[t] in batch mode.
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Fig. 5. The RBP applied to the IIR-MLP example of Fig. 8 (the bias terms are not shown). It is obtained assuming batch mode (no causalization or
truncation) and simplified recursive computation of derivatives.

However the RBP algorithm, due to the recursive structure  term with momentum parameter equal to one. In fact
of (15) and (16), can be easily approximated to obtain a very the momentum formula is
efficient on-line learning algorithm. The on-line approximation
consists of three steps: 1) incremental instead of cumulativeweight - vauatwnf”)n(p) [t +1]

adaptation; 2) future convolution truncation; and 3) causaliza- )
tion. In this section, the IIR-MLP case is fully considered. The = awezght_vamatzonnm(p) [t] 4+ w6, [t] — 0
extension to the other LF-MLN architectures is routine, and awelghtnrn(p)
so we only explain some nonobvious differences. (27)
1) Incremental instead of cumulative adaptation can be _ _
implemented using where « is the momentum parameter that in general
. can be chosen in the rangé: < a < 1. Here we
weight_vars LatLOTL() (o) [t+ 1] = Aweightir)n(p) [t+1] will consider only the incremental adaptation without
(25) momentum.
instead of (11) and (13), at each time step, where2) If a causalization is desired, a truncation of the future
“weight” indicates eitherw or v. This is the approxi- convolution is necessary, due to the infinite memory of

mation that is usually proposed in literature for dynamic the IIR synapses. The truncated formula is therefore

networks. However, a less obvious choice could be done
enlt], forl=M

a5V N
Aweight( ) —N‘s(l)[ ]n— 11 Qi 15) t
nm(p) O] D] — (1+1) yqn [ + 7]
8waghtnm(p) e’ [t] Z Z §4HI[ 4 p) Pan PPl (1)[] (@9
t—1 q=1 p=0
+ Z Awaghtnm(p)[r +1].  (26) foril=(M-1),---,1

=1 where ;11 is appropriately chosen. In the particular

This expression can be computed iteratively (with an case when in a given Iayéff,)n =0 for eachn, m (i.e.,
approximation) that is equivalent to using a momentum  the synapses have finite memory) it is useful to choose
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Fig. 6. The CRBP applied to the IIR-MLP example of Fig. 8 (the bias terms are not shown). It is obtained assuming on-line mode (with truncation and
causalization) and simplified recursive computation of derivatives. The Back—Tsoi approximation uses the same flow diagram but with a nmultiplicatio
for w'?) _ instead of the truncated IIR filtering an@. = 0.

11(0)
Q = max(Lg,)n — 1). In this way, @; is set to the time instant (present)
maximum memory of the synaptic filters of the layer and Nijr Quia 9 (l+1)['r —
no real truncation of the filter response is implemented e{V[r — @, 1= >~ > s{HV[r %,
as in Wan’s temporal backpropagation [8], [22]. g=1 p=0 A’ [T — Q4]
3) Then we have to introduce a suitable number of delays fori=(M-1),---, 1. (31)

in the weight adaptation formulas in order to remove the

4 In (28) and (31), the trivial hypothesi§[t] = 0 for
noncausality. In other words

t ¢ [1, T] has been done. Expression (31) is now causal

weight D[t 4+ 1] = weightV[t] since it is evaluated at time from delta’s up to time
—i-weight_variation(l) [t+1— Dy](29) 7. The impulse response comp(lljﬁsl by (21) |(?) used by
where D, is a suitable integer number. It follows that reversing the time scale sin¢dygn [t — p]/dzn’[t —
0 it 1= M Qi+1]) = h[Q,,; — p] in the time invariance hypothesis
M (or in that approximation), whereas backpropagating
Dy = Z Qi, f1<I<M (30) errors and delta’s are used in the normal time scale,
i=l+1 as for standard convolution.

The causalized formula can be obtained from (28) by The result is not assigned to the backpropagating error at
reversing the order of the internal summation and issuitigne = but at timer — @1, as dictated by (31). For the sake
the variable changet+ Qi1 — 7, wherer is the current of clarity, a diagram of CRBP is shown in Fig. 6.
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The causalization and the on-line update, compared sonplified formula is
the batch mode case, is not a strong approximation if the

learning rate is small enough, because in this case the weights CQE]’ fori =M

variation is small in the time interval ab; instants. Instead e[t = Z 5(l+1)[t]w(1+1) forl=(M—1), -, L.
the truncation approximation can be justified by the following p ! {0y b
property. (32)

« If a linear time invariant IIR filter is asymptotically stable!n this way the backpropagation is considering only the
(i.e., all the poles of the transfer function are inside tH@stantaneous m(flIJL:le)nce of the IR filter input on the output
unit circle) then(dy[t + p]/dx[t]) — 0 if p — co where (the coefﬂmenj[wnm o). Hence in the schemg of Fig. 6-, t.he

y[t] is the output of the filter and[t] the input at timet. truncated IIR filter should be replaced by a simple multiplica-

The proof can be done in two ways that are both interesti fion for wﬁ)o - No causalization is needed (becausg= 0
nf%'r each!) and the algorithm is very simple. However, we shall

The first is just considering that the derivative is the impuls%ow that with the inclusion of only few additional memory

response of the filter that must go to zero in the stabg . . o .
. L : rms in the backpropagatio@(;1 > 0) it is possible to reach
case. The second is considering that in (21) and (24) t ch better stability and spee+dl of convergence.

recursion coefficients are the same of the corresponding IR0 the BPS algorithm (on-line mode) [18] can be ob-
filter therefore their poles must lie inside the unit circle fofained as particular case of CRBP under the architectural
stability, i.e., the derivative goes to zerojas» occ. The second restriction that the dynamic units can be only placed in the
reasoning is more general and it is interesting because it shait |ayer. In this case, like BPS, CRBP implements no real
a way to verify the validity of the truncation hypothesis for anyruncation of past history. The CRBP applied to AR-MLP can
locally recurrent network architecture, e.g., output feedbak also viewed as a generalization of the Leighton—Conrath’s
MLN. For the derivative to go to zero it is necessary anaork [44], although their formulas do not exactly match the
sufficient that the feedback coefficients in the calculation @kpression corresponding to (32) for the AR-MLP.

(21) or the corresponding expressions in the Appendix, give

poles inside the unit circle. V. EXPERIMENTAL RESULTS

Moreover, it is well known that impulse responses of stable : . .
P P The simulation results reported here are of two kinds. The

rational transfer functions have an exponentially decayiq ti . ¢ diff tlocall t architect
behavior. This means that the truncation parameter can E%h 'S a comparison of diierent iocafly Feculrrent architectures
. : . ) . with more traditional dynamic MLP using a fixed training
chosgn quite small. This fapt was conﬂrm.ed by the S'mUI""t'OPﬁethod for each one. The second and more important simula-
even if they show that setting the truncation parameter t0 Z&[9, is the comparison of runs of CRBP with different values
IS a too strong approximation that should be avoided. of the truncation parameter and of CRBP with other training
The previous property can be used to automatically selggkthods, keeping the architecture fixed. Each of these two
the desired truncation paramet@y,, by taking into account simuylations was run on two different system identification
the impulse response explicitly computed by the algorithripsks.
In the subsequent discussions this possibility is not furtherMany simulations were performed on three locally recurrent
investigated, since for the selected problems a good choiceaohitectures [shown in Fig. 3(b)-(d)] while the AR-MLP
the truncation parameter was within a very small range. [Fig. 3(e)] was not implemented. For comparison purposes,
The condition(dy[t + p]/dz[t]) — 0 if p — oo where also two traditional neural networks were tested, namely the
y[t] is the output (or the net) and(t] an input of a recurrent static MLP with input and possibly output buffer, (shown in
neuron [20], [55] holds by definition for each neuron in IIRFigs. 1 and 2), and the FIR-MLP [Fig. 3(a)]. The results re-
MLP, activation-output feedback MLN'’s and AR-MLP in casd?orted here refer to two problems of identification of nonlinear
each neuron exhibits forgetting behavior. Instead in case $fnamical systems. _ _ _
latching behavior (possible only for output feedback MLN), The number of delays for the five architectures (i.e., buffers

that derivative does not go to zero and the correspondi@gthsécor the %uffer(fad MhLP;S' NlllA orders for the FIRk'MLP'
linear system is unstable [20]. In this case, the truncation » and AR orders for the locally recurrent networks) was

the internal summation in (20(see the Appendix) can be toochosen in order to ob'taln the best performance (approximately)
f%r each network, while the total number of free parameter was

strong an approximation. However, it should be considen‘alxed (40 parameters, bias included), as shown in Table |
that the advantages of networks with local feedback over fully 5 4o etworks u,sed had two Ieiyers three hidden ﬁeu-

connected ones is especially in modeling a forgetting behavi%nS with hyperbolic tangent activation function, and one
Latching behavior is outside normal working conditions fOfnear output neuron. Three different learning algorithms were
locally recurrent networks. used: standard static backpropagation for buffered MLP (with
The algorithm proposed by Back and Tsoi [3], which is thgpen-loop approximation if feedback is present), temporal
only on-line learning algorithm proposed for locally recurrenyackpropagation for FIR-MLP [8] and the proposed CRBP
networks with no architectural restriction, can be seen asaRyorithm for the locally recurrent networks. Momentum term
particular case of our approximation where a strong truncatiand adaptive learning rate were not used. The results are
of the summation is assumed};; = 0 for eachl. The given in terms of mean-square-error (MSE), expressed in dB,



CAMPOLUCCI et al: ON-LINE LEARNING ALGORITHMS 263

TABLE |
NUMBER OF DELAYS FOR THE DIFFERENT BUFFERS USED FORALL THE NEURAL NETWORKS IN BOTH THE SYSTEM IDENTIFICATION EXPERIMENTS FOR THE
THREE LOCALLY RECURRENT ARCHITECTURES THENUMBER OF DELAYS FOR THE MOVING AVERAGE PART (INPUT BUFFER) AND THE AUTO
REGRESSIVEPART (FEEDBACK BUFFER) FOR THE HIDDEN AND OUTPUT LAYERS ARE SPECIFIED. ALL THE NEURAL NETWORKS HAVE THE SAME
NUMBER OF ADAPTABLE PARAMETERS, i.€., 40 BAs INCLUDED, WITH THE ONLY EXCEPTION OF THEACTIVATION FEEDBACK MLN U SED
FOR THE BACK—TsoI SYSTEM THAT HAS 34 PARAMETERS. INSIDE BRACKETS THE SHORT NAMES USED IN TABLE |l AND FiGs. 11 AnD 14

Neural architecture used

Experiment 1:
Back and Tsoi system

Experiment 2:
PAM system

Buffered MLP (STAT) 5 input delays; 4 feedback delays 10 input delays; no feedback
(tot. 11 inputs) (tot. 11 inputs)
FIR-MLP (FIR) hidden MA-AR: 5-0; hidden MA-AR: 5-0;
output MA-AR: 5-0 output MA-AR: 5-0
IIR-MLP (IIR) hidden MA-AR: 2-3; hidden MA-AR: 3-2;

output MA-AR: 2-3

output MA-AR: 3-2

Activation Feedback MLN (ACT)

hidden MA-AR: 2-3;
output MA-AR: 2-3

hidden MA-AR: 4-3;
output MA-AR: 2-3

Output Feedback MLN (OUT)

hidden MA-AR: 4-3;
output MA-AR: 2-3

hidden MA-AR: 4-3;
output MA-AR: 2-3

computed on the learning set after each epoch (after all the
input—output samples were presented) and averaged over ten
runs, each with a different initialization of the weights. Also,
after each iteration the network state was reinitialized.

A. First Simulation: Back—Tsoi System ldentification

MSE [dB]

The first set of experiments consisted in identifying the
nonlinear system with memory presented by Back and Tsoi in
[12]. This system is described by the following input—output
relationship:

80 120 160 200
ITERATIONS (epochs)

0 40

2(t) = 0.01542(t) + 0.0462z(t — 1) + 0.0462x (¢ — 2)
10.01542(t — 3) + 1.992(t — 1) — 1.5722(¢ — 2)
+0.4583%(t — 3)

y(t) = sin[z(t)]

Fig. 7. Convergence performance of various algorithms and networks on
identifying the Back—Tsoi test system. STAT is buffered MLP, FIR is
FIR-MLP, IIR is IIR-MLP, ACT is activation feedback MLN, OUT is output
feedback MLN. Learning ratg = 0.01. Truncation parametef)» = 10.
Plots are averaged over ten runs with different weight initializations.

(33)

where z[t] and y[¢] are the input and output signals at time

t, respectively. The input sequencgt] consists of 1000 small Q2, i.e., with a small number of recursive terms. A
points of white random noise, with a uniform probabilitvery small truncation parameter is required to obtain good
density function betweer-1 and+1. This sequence and theperformance, while increasing it beyond a certain small range

corresponding output sequengl¢] constituted the training setdoes not change the MSE appreciably. The BPS algorithm
for the various neural networks. was not included in the comparison because it is not appli-

From Fig. 7, it is evident that the locally recurrent MLP’scable to the architecture selected, since the output neuron is
exhibit much better modeling capabilities than the static ML&ynamic.
or FIR-MLP, and much better accuracy (asymptotic MSE) too.

The learning was stopped at 200 iterations chosen agzagecond Simulation: 16-PAM System Identification

reasonable number of iterations for each architecture. ThisTh q ¢ . ied h
simulation (and the corresponding one in the second set of ne secon seto _expe_nr_nents was carrie ou_t on the more
; -%eallsnc problem of identifying a baseband equivalent PAM

test problem for comparing learning algorithms for locall ansmission SV_Ste”? n the presence of_a nonlmearlty [14].
recurrent neural networks. Since locally recurrent networ _@e pulse shaping circuit transforms the discrete-time symbols

perform better than traditional ones on this problem it foIIow§t.rea'm[n] into agontinuous—time signal?) (PAM) b.y afiter
that it is a reasonable choice to test the CRBP learnit th a raised-cosine shape.and roll-off fac@prThe S|gnalv[t.] .
algorithm; the same is true for the second problem. Fig.I then processed by the high-power-amplifier (HPA) which is

shows the performance of the CRBP learning algorithm witR°d€led here by the following input-output relationship:
different values of the truncation parametefs (Q> =
0 is the Back—Tsoi algorithm). It is clear that the CRBP wlt] = 20[t]

_ 2l (34)
performs much better than the previous algorithm even with 14 v2[t]
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03 1] (AWGN)
5
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] (] ¥l
=15 ¢ 1,23 aln] Pulse shaping | L3 HPA
N filter
0] 3
= 25
-30 Fig. 9. Block diagram of the PAM transmission channel used in the sim-
353 ulations.
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0 20 40 60 80 0
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-5 w ] acT'? OUT
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_ 153 20
5 ] 2 1 2 ]
: -20 3 ]
wn ] 1
= 05 3 -25
] 0 40 80 120 160 200
-30 ITERATIONS (epochs)
-35 4
1 Fig. 10. Convergence performance of various algorithms and networks on
-40 identifying the 16-PAM transmission system. STAT is buffered MLP, FIR is
0 20 40 60 80 FIR-MLP, IIR is IIR-MLP, ACT is activation feedback MLN, OUT is output
ITERATIONS (epochs) feedback MLN. Learning ratg = 0.01. Truncation parametef)s = 10.
®) Plots are averaged over ten runs with different weight initializations.
07 chosen to be a random sequence of 512 symbols drawn from
5 a 16-symbols alphabet. The pulse shaping filter had a roll-off
10 3 1 factor o« = 0.3, and the HPA back-off3 was set to—2 dB.
=15 ] 0 2 The noise level was very low: SNR 80 dB.
T -15 . : .
3 7 By using an over-sampling ratio of four at the output
@ -20 4 with respect to the symbol rate, the sequenfgs|} of 512
-25 symbols andy[t]} of 2048 samples were used as the learning
_30_5 set and again the MSE was computed after all the 512 input
] symbols (epoch) were presented.
.35 . . .
o 20 20 o0 20 Fig. 10 shows the performance of the five neural architec-

ITERATIONS (epochs) tures: again the locally recurrent MLP’s perform much better
© than the two conventional MLP’s in modeling the system.
Simulations reported in Fig. 11 show that CRBP, is much
Fig. 8. Convergence performance of locally recurrent networks trained - ;
CRBP with various values of the truncation paramefgs)on identifying the ’Pé{SteI_" stable and a!so more accurate than the _BaCk Tsol
Back-Tsoi test system(), = 0 gives the Back-Tsoi algorithm). Learning @lgorithm that sometimes does not converge. Again, a very
Ea)teu = O%OO?G-bRelfults for ga) IIR-MLdP, (b) adctivation feidback MLN, andsmall truncation parameter of CRBP is required to obtain good
c) output feedback MLN. The MA and AR orders were chosen, respective P : : :
as 1 and 4, for both the hidden and output layers of all the networks. PI grformance, while increasing it 9ver a Certam,’ small, range
are averaged over ten runs with different weight initializations. does not change the MSE appreciably. Generalization tests for
the identification of the 16-PAM channel were made using

Th K f the input si i t o th | ¢ an input symbol sequence different from the one used for
e peak power of the input signalf] is set to the value o learning. Results are given in Tables Il and Ill; they show

/3 dB (back-off factor), with = 0 dB being the normalized , \1sE"on the test set very close to that obtained using the
unit power. The HPA outputt] is corrupted by an additive |g4rning set, for all the dynamic architectures and for various
white Gaussian noiseglt], producing the final signaj[t] with  -noices of the truncation parameter.
a given signal-to-noise ratio (SNR) (c.f. Fig. 9). The overall The derivation of RTRL and truncated BPTT for locally
system is clearly dynamic and nonlinear. recurrent neural networks is quite difficult by traditional ap-
A neural-network approach to equalize this system h@goaches (chain rule expansions) and is a not yet published
already been proposed in the technical literature [15]. In og$sult to the best of our knowledge. Recently, a new ap-
experiment a neural network was used instead to identifypeoach was derived based on signal flow graphs that makes
sampled version of the system. For this purpdsgn|} was this derivation feasible [59]-[61] but a detailed discussion is
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TABLE I
GENERALIZATION PERFORMANCE OFVARIOUS LOCALLY RECURRENT NEURAL
NETWORKS ON IDENTIFYING THE 16-PAM TRANSMISSION SYSTEM.
STAT I1s Burrerep MLP, FIR Is FIR-MLP, IIR Is IIR-MLP, ACT Is
AcTIvATION FEEDBACK MLN, OUT Is OuTtpuT FEEDBACK MLN.
THE ARCHITECTURES AND PARAMETER SETTING ARE THE SAME AS

) FOR THE RESULTS REPORTED INFIG. 14. ReSuLTS ARE AVERAGED
W OVER TEN RUNS WITH DIFFERENT WEIGHTS INITIALIZATIONS
=
MLP type | Asymptotic | Testing
Learning MSE [dB]
MSE [dB]
STAT -20.04 -20.09
0 20 40 60 80 FIR -19.27 -19.43
ITERATIONS (epochs) IR 2385 2439
(a) ACT 2439 245
ouT -23.18 -23.32
0+
23
-4§ TABLE 1l
-6 0 GENERALIZATION PERFORMANCES ON THEIDENTIFICATION OF THE 16 PAM
—. .81 5 1 SysTEM oF CRBP wiTH DIFFERENT VALUES OF THE TRUNCATION TERM
=] 10 3 (2, FOR A SPecCIFIC IIR-MLP, HAVING THE SAME ARCHITECTURE AS
w 5 FOR THE RESULTS REPORTED INFIG. 15(a). RisULTSARE AVERAGED
£ 12 p OVER TEN RUNS WITH DIFFERENT WEIGHTS INITIALIZATIONS
143
~16 4 Truncation | Asymptotic | Testing
18 ] Parameter | Learning MSE [dB]
B Q2 MSE [dB]
-20 1
0 20 40 60 80 0 (Back-Tsol -18.0 -18.0
ITERATIONS (epochs) alg)
2 -19.0 -19.5
(b)
3 -19.2 -19.1
04 4 -20.7 -19.4
] 10 2038 -19.7
20 -20.9 -19.6

MSE [dB]

further complexity. Moreover, as explained in the following

Section, RTRL and truncated BPTT are more complex than
CRBP with regard to arithmetic operations, and also CRBP
compared to RTRL has the advantage of being local in space.

0 20 40 60 80
ITERATIONS (epochs)

(©) . .

, , For the simple case of a fully recurrent, single layer,
Fig. 11. Convergence performance of locally recurrent networks trained bY le del | t K d of th
CRBP with various values of the truncation parametgs ) on identifying single e_ay neura ne_ WQI’ compose . 0 neuro_ns* e
the 16-PAM transmission systen){ = 0 gives the Back—Tsoi algorithm). computational complexity i$)(n?) operations per time step
Learning ratey = 0.003. Results for (a) IIR-MLP, (b) activation feedback for epochwise BPTT O@(th) for truncated BPTT [1] (Where
MLN, and (c) output feedback MLN. The MA and AR orders were chosen, . 4
respectively, as two and three for both the hidden and output layers of all Rﬁés the past tempqral depth) compared wittr ) for RTRL:
networks. Plots are averaged over ten runs with different weight initializationEhe memory requirement i©(nh) for epochwise BPTT (in

this caseh is the epoch length) or truncated BPTT, anith?)

for RTRL. Therefore as far as computational complexity is
beyond the aim of the paper. For the sake of completenessncerned, in batch mode BPTT is significantly simpler than
the learning performances and the computational complexitR$RL, whereas in on-line mode the complexity and also the
have been studied including these algorithms which are deemory requirement ratios depend oty ~. Therefore ifh is
rived in [59] and [60]. Fig. 12 shows that CRBP, RTRL andarge enough compared t& then Truncated BPTT is more
truncated BPTT are substantially equivalent and the Back—Tsoimplex than RTRL, but usually the contrary is true.
method is much less performant. With this regard it should The recursion implemented in RBP is less efficient with
be considered that for implementation reasons the truncatedpect to the calculation in BPTT, so for batch mode, BPTT
BPTT is implemented with weights values at the proper tinghould be preferred, unless the memory requirement is an
step in each time in the past history considered [1], while issue. In this case RTRL can be preferred since for long
CRBP they are set as the ones at the current time step, sasaguences it requires less memory.

VI. ANALYSIS OF COMPLEXITY AND IMPLEMENTATION ISSUES
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Fig. 12. Convergence performance of an IIR-MLP network trained by CRBP, Back-Tsoi, RTRL, and truncated BPTT on identifying the 16-PAM transmission
system. The MA and AR orders were chosen, respectively, as three and two for both the hidden and outpubJayers; = 10. Plots are averaged
over ten runs with different weight initializations.

The advantage of RBP is evident only in on-line mode. IBack—Tsoi algorithm (one iteration) is less than 1.5, for usual
this case the proposed CRBP algorithm is more efficient tharchitectures and parameter settings.
truncated BPTT, since it has a better scaling of the numberA mathematical evaluation of complexity can be carried
of operations increasing the respective truncation parametguf computing the number of multiplications and additions
i.e., Q; and h. for one iteration (i.e., one sample here) of the learning phase
The explanation of this fact is intuitive and detailed by théon-line learning). In Table IV, results for CRBP, Back—Tsoi,
analysis of complexity. While in truncated BPTT for eactRTRL, and truncated BPTT are reported in the significant
parameter adaptation a summation of the products betwé&@gcial case of two layers [IR-MLP with bias and with MA-
delta and the parameter inputs must be computed over g orders depending only on the layer indéx: = 2, LY, =
consideredh time steps past history, in CRBP the analogous®, Ii%, = I®.
of this summation is computed to calculate the delta (31) The numbers in Table IV must be added to the number
that is used to adapt many weights, saving computation. Ffroperations of the forward phase, always done before the
each parameter adaptation no summation in time is need@¢kward phase.
but just the product betweedelta and the derivative of ~The number of multiplications or additions of the forward
the net with respect to the parameter [(12) and (14)]. Thehase (one iteration) is
calculation scheme used is also motivated as a generalizatipn =~ _ 4.
to the recursive case of that implemented in Wan’s temporal B (1) 1) @) @)
backpropagation [8], which is the main training method for =NiNo (L +1 )+N2N1 (L +1 ) (35)

TDNN, and also of that used in adjoint least mean SquUa§g provide an easy evaluation of complexity, Tables V and
algorithm [57], a well known training procedure in the signal;| report the numbers of operations obtained from Table IV
processing community. for the parameters choice of some simulations reported here.
The increase in computational complexity between thghese values should be added to the number of forward op-
Back—Tsoi algorithm [3] and CRBP is only in formula (28)erations before computing complexity ratios between different
since, due to the recursion, the truncation paramefer () algorithms.
can be usually chosen quite small (verified in our simulations By these formulas, substituting the configuration parameters
and theoretically motivated by the exponential decaying ef each of the three IIR-MLP networks used in the simulations
impulse responses of stable rational transfer functions) makifgorted, and withp, = 4, it is possible to get an averaged
this increase fairly small. This holds of course in the casatio Mcrer/MBack—Tsoi = 1.24 and Acrer/ABack—Tsoi =
of forgetting behavior and not in the case of long-term.18, proving that the increase in complexity is quite small.
dependencies but the first is the normal working condition of Moreover, for IIR-MLP and activation feedback MLN it is
network with local feedback. In our simulations, we observegbssible to apply to CRBP the same simplification proposed
that the ratio between the execution times of CRBP amy Back and Tsoi in [12] for their algorithm. The idea
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TABLE IV
NUMBER OF OPERATIONS FOR ONEITERATION OF THE ON-LINE LEARNING PHASE FOR THE DIFFERENT ALGORITHMS. GENERAL EXPRESSIONS

Learning | # ADDITIONS # MULTIPLICATIONS
algorithm
CRBP | 2N, + NN [IV + LPUD + 1)+ (1) |+ NN, 12 + L9 + 1) + AN, + Ny)+ NN [19 + LU 1)+ (1) ]+
2 & —1P 410 Q> L7 -1 o
PP+, 114 Y minr®, gy |G T E TG > L FNN IO 5 IPUD )+ (IVY 4 0y 41+ Y min(IY, p)
pr 0 otherwise o
Back- | 2N, + NN [+ LV + )+ (1) [+ NN [1? + 190D 1) + 2N+ Ny)+ NN [10 + LU0 + 1)+ (1) ]+
Tsoi (D) +1] N NI+ 2P + 1)+ (1) +1]

RTRL | 2N, + NN, (1" + L‘”)[(I‘“ + I, + I+ NN (12 4 Z2)(1% +2) | 3N, + NNy (17 + L“’)[(I‘“ +LP)N, + 10 +2N, + 1] +

NN (1D + EYIP +3)+ 2NN, + N,

T-BPTT | W, +h[Nan(2[‘” + L)+ 2NN (T I0) = Ny (N, = 1)+ Nl] N, +h[N1NO(21“’ + L0+ 1)+ 2NN, (1D + LP) + N (N, + 1)]
TABLE V change slowly in time (a small learning rate is used) since it
NUMBER OF OPERATIONS FORONE |TERATION OF THE ON-LINE assumes the time invariance of the filter. The simulations do
LEARNING PHASE FOR THE DIFFERENT ALGORITHMS WHEN: h iable | f f in the | .
No=1,N =3 No=1, L) = L) = 3, not show an appreciable oss of performance in t e learning
IM =12 =2 Qs =10, h = 10 process [12], [13], [43], while the number of AR filtering
operation per synapse is reduced fratf), + I, to one.
y i i A TIONS ILTIPLICATIONS . . . . . . .
IC;“};;“""’ Algorithm T4(‘)')')”'°“ Tg“;u cal Even if this approximation works well in our simulations we
Back Too used the exact formulas.
ack-Tsol 83 101 A ) . i
RTRL 167 237 We tested another minor simplification of the CRBP formu-
TBPTT 51 601 las, neglecting the recursive part of (15), (16), and (21) (i.e.,
assuming null past values) as it is sometimes done for IIR
linear adaptive filters. However, the obtained performance of
TABLE VI just this minor simplification were so unsatisfactory that we
NUMBER OF OPERATIONS FORONE ITERATION OF THE ON-LINE did not use it anymore.
LEARNING PHASE FOR THE DIFFERENT ALGORITHMS WHEN: - . .
IO =712 =2 Qs =4,h =4 simulations we observed that, if the IIR network was initialized
with stable synapses, the final result is a stable network as long
Learning Algorithm # ADDITIONS # MULTIPLICATIONS as a small enough learning rate is used. A similar behavior was
CRBP 104 134 exhibited by all the other locally recurrent architectures.
Back-Tsoi 83 101
RTRL 167 237
T-BPTT 209 241

VII. CONCLUSIONS

In conclusion, the results presented in this work show
is exactly the same used in the adaptive IIR filter conteittat the locally recurrent MLP’s have superior modeling
[13], [43] and is explained in the following, considering onlycapabilities with respect to more traditional networks, namely
IIR-MLP for the sake of simplicity. To compute thg\),, MLP with external memory and FIR-MLP (or TDNN) for
guantity we have to pass the input of the synapse throutigntification of the systems testec_i; see [39] for a comparison
the IR synaptic filter; while to computéasgf)[t]/awffr)n(o)) on _ot_her tes_t problems. We described a general approach for
we need to pass the same input through the AR part Oﬂﬁrlvmg on-Iln_e glgorlthm_s for locally recurrent networks tha_t
of the same filter. So, implementing the IR filter in direcff® local bothintime and in space and proposed a new learning

form Il (i.e., filtering the synaptic input during the forwardmethOd’ that, includes as special cases, several algorithms

phase separately with the AR and MA parts) and keeping tﬁlaready known in the literature. The proposed algorithm has

: : o 0) Lo ~ bétter stability and higher speed of convergence compared
intermediate value, theds.”[¢]/ awnm(O)) quantity is imme to the Back-Tsoi method, as expected by the theoretical

diately aya|lable during the backward phase without 1Eurth%lrevelopment and confirmed by simulations. Stability and speed
computations. _ _ o of convergence are very important in real on-line applications,
Moreover it is possible to introduce an approximation [12] 4 \vhere time varying systems have to be tracked. The only
to get an additional decrease on complexity: computing tieawback of the algorithm is a slight increase in complexity
different values Of(asg)[t]/aweightff,)n@)) (wetght is w or  with respect to Back—=Tsoi method, which however can be
v) for the differentp as the same quantity obtained for theasily reduced.
first p delayed by a suitable number of time steps, as shown inwith respect to an application of RTRL and truncated BPTT,
Fig. 6. This approximation is already known in the adaptivihe proposed algorithm is computationally simpler and easier
IIR filter theory [13], [43] and is reasonable if the coefficientso implement.
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APPENDIX The backpropagation is now
RBP FOR LocAL FEEDBACK MLN’s _
AND AUTOREGRESSIVEMLP enlt], fori=M

. . . . ) Nipr T—¢ 9 (14+1) +
For uniformity of presentation, the RBP algorithm is cov- eﬁf)[t] = Z Z 6§l+1)[t + 7] 34—["‘1’]7 (20)
ered in this Appendix instead of CRBP. Of course the same =1 =0 8a:$f)[t]
modifications explained in Section IV can be implemented to fori=(M-1),---,1

derive the CRBP from the RBP method.

In all of the following cases if no feedback is prese
I = 0 for eachn and ), each architecture becomes AVt 4 ) WD i o< p< 18D _ 1
a FIR-MLP and the RBP algorithm gives Wan's temporasz)[t] = <{ ’ P )
backpropagation (batch mode). If no memory is present at "
all (I,(f) = 0 and LY, = 1 for each n, m, andl) then

n\fvhere the derivatives are computed as

0, / otherwise

111in(I((Zl+1>,p)
S 9sg Tt p = 1]

each architecture becomes a standard MLP and RBP gives + Z a(r) 9 (l)[t]
BP (batch mode). The on-line mode versions of TBP and BP r=1 In )
are obtained as particular case of CRBP. (21)

The forvyard and backward formulgs for LF-MLN's andBackpropagation for sequences [18] (batch mode) for acti-
AR-MLP differ from those already derived for the IIR-MLP, 540 feedback MLN is obtained as a particular case if the

because the AR filtering is performed once for every neurQhepitectyre is constrained to have dynamic units only in the
and not for every synapse, lowering the number of frefﬁst layer. In our notation this is writted;ﬁl) = OandLﬁf,)n =1

parameters. Therefore thg input index 9f the AR coefficien'tgrl > 1 and for eacl, m. In this case standard BP is applied
(v), and Fhe AR orde'rI() is now meaningless and will beto compute delta since (30and (21) become
dropped in the following.

enlt], forl=M

. . N,
A. Activation Feedback MLN D[] = f 5<l+1)[t]w(1+1) fori= (M—1), . 1.
Only the formulas which are different from those corre- po ! mo T
sponding to the IIR-MLP are reported here. They can be

easily derived in a similar way. The forward formulas ar€ince RBP is a batch mode algorithm (cumulative adaptation

now replaced by of weights) the particular case is still a batch mode algorithm.
The on-line original version of BPS is obtained from the CRBP
; o _ or simply substituting cumulative with incremental adaptation
SO in RBP
l - in .
sV =30 > wl eV -yl
m=1 p=0

0 B. Output Feedback MLN

+Z Ur(f() )sﬁf) [t — p] The important difference of output feedback MLN

=1 b [Fig. 3(d)] with respect to IIR-MLP and activation feedback

1) MLN is that in the former the dynamic part and the

Ol — o W 0 , nonlinearity are not separated anymore.

ay [t] —ng(sn 1] +wn0>' (2). Now it is not possible to look at the internal summation
of (20) as future convolution, because the derivative is not
@n impulse response anymore, due to the nonlinearity. The
ifferences in the learning formulas with respect to the acti-

It should be noted that nowt’ [t] does not represent the ne

qguantity anymore since it differs from that for the additivd ; _ , g
bias. Due to this bias term the relation between delta aMation feedback MLN is basically that the AR coefficients are

backpropagating error is now multiplied with th_e derivatiye _of th.e activatior) f_unction
computed on the net in a certain time instant, as it is easy to
prove by chain rule.
6101] = el [t] sen’ (Sg)[t] +wf£). @) Only the formulas which are different from those corre-
sponding to the activation feedback MLN are reported here.
The coefficient variations are now computed using the derivahe forward formulas are now replaced by
tives expressed by

iy T, =1
D] = O] -y _
o (l)[t] Iq(p 9 O] [t ] 5n [t] E:O pz;) wnrn(p)xrn [t p]
Sn — Sn - T m= =
PO =D —p] + Z vff()T) WO (15) o
wnrn, r=1 wnm P
(l)(p) 750 0 v + Z vff()p)a:g)[t —7] 1)
Isn il _ o ~ @ Osnlt—7] s
=sPt—pl+ > o), —F5— (16).
@ el ") gy O[] = spm (s© ’
avn(p) r—1 avn(p) x,[t] sgm(sn [t]) 2").
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As for the IIR-MLP it holds Similarly for the v weights we have
SO = O sem’ [ DT ). g (l)
The coefficient variations are now computed using the deriva- Unm (p)
tives expressed by The coefficient variations are now computed using the deriva-
. Q) tives expressed by
M =zt - p] + Z Up(y SET0 (s(l) [t — 7]) !
aw(l) n(7 n a.TgL)[t] (l) (l 1) n (l) a.’l’n t — 7]
) OB ) C ) +Z oy 2ty
a O] t— aU]nrn(p) r=1 dw T”"(P)
S ([l) ] (15") (15"
8wnm<p) 5 (l)[ ] 5 ]
(0 Ty a:n [t—r
o5 _ < O o =l t—PHZ o aT- (16”)
PO =z/[t—p]+ 221 vn(1 sgm’ (sn [t — 7]) Unip) U (p)
) s t— 1] - The backpropagation is now
Sn -7
900 (16"). enlt], forl=»M
(Y
n(p) Niy1 T—t (14+1)
dr t+p
The derivatives used in the backpropagation are now computedC )l = Z Z 6(l+1) [t + 7] qa (zg[t] ]7 (20)
as g=1 p=0
a5Vt 4 ] W) it o <p< 20D g o forf=(=1),-1
(1(71)[] = <{ ﬁqn(p)’ ! ther P=Lgn = ) where the derivatives are computed as
Axy [t , otherwise
min( T((Zl+l>,p) ax((ll-i—l) [t + p]
+ Z U;l(jf)l) sgm’ (s((l”'l) t+p— 7]) oz [#]
r=1 (R (+1) _
PRCEY =sgm’ (3511+1)[t +p])<{ Wan(pyr T 0P < Lgn 1)
sy ft+p—] 21) 0, otherwise
a.’L'g]l) [t] ' min([((Z“H)’p)
/ + Z U(l+1) ax(l [t L ] (217
As for the previous case, also for output feedback MLN, — a(r) 8ng)[t] )
BPS learning algorithm is obtained, as particular case, if the B
?rchiltecture is constrained to have dynamic units only in the ACKNOWLEDGMENT
irst layer.
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