
Contributed article

Learning and approximation capabilities of adaptive spline activation
function neural networks

Lorenzo Vecci, Francesco Piazza, Aurelio Uncini*
Dipartimento di Elettronica e Automatica—Universita` di Ancona, Via Brecce Bianche, 60131 Ancona, Italy

Received 8 October 1996; accepted 3 September 1997

Abstract

In this paper, we study the theoretical properties of a new kind of artificial neural network, which is able to adapt its activation functions by
varying the control points of a Catmull–Rom cubic spline. Most of all, we are interested in generalization capability, and we can show that
our architecture presents several advantages. First of all, it can be seen as a sub-optimal realization of the additive spline based model
obtained by the reguralization theory. Besides, simulations confirm that the special learning mechanism allows to use in a very effective way
the network’s free parameters, keeping their total number at lower values than in networks with sigmoidal activation functions. Other notable
properties are a shorter training time and a reduced hardware complexity, due to the surplus in the number of neurons.q 1998 Elsevier
Science Ltd. All rights reserved.

Keywords:Spline neural networks; Multilayer perceptron; Generalized sigmoidal functions; Adaptive activation functions; Function shape
autotuning; Generalization; Neural networks

1. Introduction

Recently in the neural network community, a new interest
in adaptive activation functions has arisen. In fact, such a
strategy seems to provide better fitting properties with
respect to classical architectures with sigmoidal neurons.
Our purpose here is to study a new kind of adaptive activa-
tion function from a theoretical point of view and to justify
the observed behavior on some significant test problems,
stressing those properties related to some of the most
important theories of learning.

The simplest solution we can imagine consists in involv-
ing gaina and slopeb of the sigmoida(1 ¹ e¹bx)/(1 þ e¹bx)
in the learning process; in Chen and Chang (1996) a com-
parison with classical multi-layer perception (MLP) to model
static and dynamical systems is reported, showing that an
adaptive sigmoid in a single hidden layer structure leads to
an improved data modeling. In Reed et al. (1995) it is pointed
out that a proper sigmoid scaling is related to training with
jitters, a well-known trick to achieve a good generalization
capability. A different approach is based on the use of
polynomial functions (see Piazza et al., 1992), which

allow us to reduce the size of the network and, in particular,
connection complexity; then, the digital implementation of
the activation function through a LUT (look-up-table) keeps
the overall complexity under control. Drawbacks with this
solution arise with the non-boundedness of the function
(non-squashing), and with the adaptation of the coefficients
in the learning phase. In Piazza et al. (1993) the direct
adaptation of the LUT coefficients is tried: this time the
problems are a difficult learning process due to the large
number of free parameters and the lack of smoothness of
the neuron’s output. These are also the main reasons for the
introduction of Hermite polynomials as substitutes for the so
called supersmoother in the Projection Pursuit Learning
(PPL) approach of Hwang et al. (1994); we are not specifi-
cally interested in a constructive learning algorithm [we
retain classical backpropagation (BP)], but we notice a
good agreement with PPL because of the relevance given
to adaptive activation functions as sources of parsimony in
terms of hidden units.

The solution discussed in this paper makes use of spline
based activation functions whose shape can be modified
through some control points. In particular we’ll show how
our architecture is related to cubic splines as obtained by the
application of regularization theory. In fact, our main goal is
to demonstrate that an intelligent use of the activation func-
tion can reduce hardware complexity (see Campolucci et al.,

* Request for reprints should be sent to Aurelio Uncini. Phone: +39 (71)
220 4841; Fax: +39 (71) 220 4464; e-mail: aurel@eealab.unian.it.

0893–6080/98/$19.00q 1998 Elsevier Science Ltd. All rights reserved
PII S0893-6080(97)00118-4

Neural Networks 11 (1998) 259–270

Neural
Networks

Pergamon

1996; Piazza et al., 1996; and Guarnieri et al., 1995), while,
at the same time, improving generalization ability (which is
the main theoretical aspect we are interested in now). Given
a training setTN ¼ {(x1,t1),...,(xN,tN)} (let’s consider for
sake of simplicityxi [X # Rn and t i [Y # R), there are
infinite possible hypersurfaces able to give a good approxi-
mation of its elements, but not all of them can be judged in
the same way. Of course, we want the approximator to track
the target function also on points not belonging toTN: that is
what we mean by generalization ability, a property of cen-
tral importance studied by all the most important theories
about learning.

Regularization theory (see Poggio and Girosi, 1990a, b)
offers a synthesis-oriented approach, as it allows us to build
networks which are the exact solution of a minimization
problem involving a compromise between the error on the
samples inTN and the smoothness of the approximation: for
smoothness we mean that the neural network should be able
to avoid non-essential elements in the data, as high fre-
quency components in the domainX due to noise, and so
it shouldn’t give origin to useless oscillations which give a
non-smooth aspect to the hypersurface. The choice of the
regularization parameter (introduced in Section 2.1) also
governs the compromise between bias and variance, (see
Geman et al., 1992 and Wolpert, 1995): a smalll is respon-
sible for a close fitting of the training and of a relatively
large variance of the final approximation while a largel is
the cause of a large bias. An equivalent problem is encoun-
tered when choosing the number of free parameters in many
non-parametric regression techniques.

Regularization theory is the basis of many techniques
whose goal is a better generalization: some of them are
addressed to the training set (i.e., training with jitters, see
Reed et al., 1995); on the other hand, we are interested in
deriving an architecture which embodies some regularity
characteristics in its own activation function much better
than the classical sigmoid can do. So, after seeing cubic
splines in regularization theory and discussing some draw-
backs in their use (Section 2.1), we will explain our strategy
(Section 2.2); then we will show how we can control the
smoothness of the surface designed by the network
(Section 2.3).

In Section 3, we will expose the results of some simula-
tions on simple two-dimensional functions, on a more com-
plex nonlinear system and on a pattern recognition problem:
we will verify the good generalization ability expected
according to the theory and we will notice some other
advantages of this kind of network. In particular we will
see that the possibility of tuning the activation function
determines the reduction of the number of hidden units
together with the number of free parameters, which is
very important from a theoretical point of view, as pointed
out in Guyon et al. (1992) and in Moody and Utans (1994).
Statistical learning theories, like probably approximated
correct (PAC) or Bayesian, all try to evaluate the general-
ization error: although there are not many results addressing

particular architectures (see Holden and Rayner, 1995 and
Niyogi and Girosi, 1996), for binary classification problems
in Amari (1993) and Amari and Murata (1993), theorems
have been demonstrated which give an asymptotic upper
bound ofNfp/N, whereNfp is the total number of free para-
meters. This is not a very strict bound (in general the error is
lower), and anyway it gives a warning about the choice of a
too large number of adaptive coefficients, which could
cause overfitting. It may seem that the introduction of con-
trol points in the activation function leads to a larger value
for Nfp, but this is not true. In fact, in practical situations, we
need a few control points for each neuron to obtain a good
approximation and, at the same time, we greatly reduce the
number of hidden units, so eliminating a lot of connection
weights (especially when the input space has a high dimen-
sionality): as a consequence, in single hidden layer struc-
tures, our strategy allows the reduction of the overall
number of free parameters.

2. Cubic splines as activation function

2.1. Cubic splines in regularization theory

The reconstruction of a hypersurface from the knowledge
of a finite set,TN, of samples is a typical ill-posed problem;
in general, there are many possible functions with good
approximation capabilities on the pairs (x i,t i) and not all
of them can be considered in the same way. In fact, the
presence of noise in the measurements induces, in the
spaceX, high-frequency components that have to be filtered
by the neural model, because they are not useful for the
identification of the underlying target but are only a distur-
bance. At the same time, in those regions ofX in which we
don’t have many samples, the neural network should give a
smooth approximation of the few available data, avoiding
unjustified oscillations.

Regularization theory offers a way to choose a com-
promise between data fitting and smoothness, through a
regularizing term added to the classical squared error and
weighted by a constant:

H(f) ¼
∑N
i ¼ 1

[ti ¹ f (xt)]2 þ lllPf ll2 (1)

whereH(f) represents the functional to be minimized. The
stabilizerP is the differential operator determining the kind
of smoothness and the shape of the approximator, while ||.||
is a suitable norm. It is well known that the minimization of
Eq. (1) leads to

f (x) ¼
∑N
i ¼ 1

ciG(x ¹ xi); (2)

G is the Green’s function corresponding to the operatorP
and ci are coefficients determined by solving theN 3 N
linear system (G þ lI)c ¼ t, whereG is the Green’s matrix,

260 L. Vecci et al./Neural Networks 11 (1998) 259–270

c is the column vector of the coefficients andt is the column
vector of the targetst i.

In particular, we are interested in the one-dimensional
stabilizer

llPf ll2 ¼

∫
R

d2f (x)
dx2

� �2

dx (3)

which corresponds to the kernel G(x) ¼ |x|3. For the multi-
dimensional case, in Girosi et al. (1995) it is shown that we
can use the same stabilizer, just decomposing the functionf
in the sum ofn functions, each in charge of one component
of the vectorx

f (x) ¼
∑n

j ¼ 1
fj(xj): (4)

Then, the overall kernel is

Ḡ(x) ¼
∑n

j ¼ 1
mjG(xj) ¼

∑n

j ¼ 1
mj lxj l

3, (5)

where j, j ¼ 1,...,n, are constants. The final aspect of the
approximating function is

f (x) ¼
∑N
i ¼ 1

ci

∑n

j ¼ 1
mjG(xj ¹ xij); (6)

the symbolxij indicates thejth component of theith inputx i

in TN. An important extension of the previous function
involves a change in the system of coordinates for the
spaceX; as reported in Girosi et al. (1995), the choice of a
proper ‘‘point of view’’ can be important when representing
a multivariate function as the sum of a number of functions
equal to the dimension of the input space. Callingw j, j ¼

1,...,n, the vectors which determine the axis of the new
system anda ij the new centers in such a system, we can
write, inverting the order of summation of Eq. (6),

f (x) ¼
∑n

j ¼ 1
mj

∑N
i ¼ 1

ciG(wjx ¹ aij); (7)

that is the starting point of our considerations.
First of all, we need to evaluate the fixed parametersm j;

with no a priori assumption we may use data-driven pro-
cedures, i.e., cross-validation, which can be computation-
ally expensive when applied to large nonlinear models like
most neural networks. Then aN 3 N linear system must be
solved in order to find the coefficientsci, i ¼ 1,...,N; in real
applications, the numberN can be large and the problems
related to the inversion of the matrix (G þ lI) can become
quite hard. The large value ofN is an obstacle for hardware
implementation, too, because we should usenN kernels
(N kernels for each of then directions), which meansnN
neurons, a lot of connections and, in the case of VLSI
implementation, a large silicon area. Of course, it is possible
to reduce the number of centers fromN to N9 (N9 , N) using
a sub-optimal solution of the minimization of Eq. (1), but
here we will take a different approach.

Our idea consists in realizing a neuron with a more com-
plex activation function than the sigmoid, able to reproduce
the shape of a whole cubic spline along the directions spe-
cified byw j, j ¼ 1,...,n.

J(wjx) ¼
∑N
i ¼ 1

ci lwjx ¹ aij l
3 j ¼ 1, :::, n (8)

Thenf(x) can be written as

f (x) ¼
∑n

j ¼ 1
mjJj(wjx), (9)

and the final architecture is shown in Fig. 1. Nowm j, and the
components ofw j, for all the indexesj, can be found by
backpropagation, thus solving the problem of the optimal
set of the parametersm j and of the ideal system of coordi-
nates (although we can get trapped in local minima). The
open question is aboutJ j. Once again, the exact imple-
mentation of Eq. (8) would require the knowledge of all
the coefficientsci, so we choose a different solution, that
is using a cubic spline of simpler structure. Its main
characteristics are the adaptation of its shape through
some control points and a suitable degree of smoothness.
Notice that in our implementation a bias parameterwj0 simi-
lar to the one used in sigmoidal neurons has been introduced
and so we will deal with a functionJ j(w jx þ wj0). The last
point to discuss is the approximation capability of the func-
tion in Eq. (8): of course, it will behave well on targets
which are likely to have an additive structure, but, in
general, a number of hidden units equal to the dimension
of the input space is not enough to obtain universal approxi-
mation of continuous functions on a compact set. However,
we can extend the idea of a neuron with a cubic and smooth
activation function to architectures involving a larger
number of hidden units (or even more than one hidden
layer), though they cannot be directly derived from
regularization theory.

Fig. 1. Architecture deriving from Eq. (9): the functionsJ j, j ¼ 1,...,n, are
the cubic splines of Eq. (8).

261L. Vecci et al./Neural Networks 11 (1998) 259–270

2.2. The cubic spline based adaptive activation function

Referring to the papers by Campolucci et al. (1996) and
Guarnieri et al. (1995) for further details, here we give some
notes on such realization of an adaptive activation function.
As we have anticipated in Section 2.1, the goal is to give a
global approximation of the curve drawn by the functions
J j, j ¼ 1,...,n, using a structure as tractable as possible. In
Eq. (8) we find a spline withN þ 1 tracts: each of them is
described by a different combination of the coefficientsci,
because of the change in the sign of the kernels ata ij. We
have chosen to represent the activation functions through
the concatenation of even more local spline basis functions,
controlled by only four coefficients. As we want to keep the
cubic characteristic, we have used a Catmull–Rom cubic
spline. Using this type of spline we could exactly reproduce
function Eq. (8), but, of course, this is not the cheapest
solution, as reported in Appendix B, so we will take a dif-
ferent approach. Referring to Fig. 2, theith tract is expressed
as

Fi(u) ¼
Fx, i(u)

Fy, i(u)

" #
¼

1
2

u3 u2 u 1
� �

¹ 1 3 ¹ 3 1

2 ¹ 5 4 ¹ 1

¹ 1 0 1 0

0 2 0 0

26666664

37777775

Qi

Qi þ 1

Qi þ 2

Qi þ 3

26666664

37777775 ð10Þ

whereu[0,1] andQ ¼ (qx,qy). Such a spline interpolates the
pointsQ i þ1(u ¼ 0) andQ iþ2(u ¼ 1) and has a continuous
first derivative, which is useful for the backpropagation-like
learning algorithm (see Appendix A). The second derivative
is not continuous only at the knots. In general, Eq. (10)
represents a curve: to obtain a function we have ordered
the x-coordinates according to the ruleqx,i , qx,iþ1 ,
qx,iþ2 , qx,iþ3.

To find the value of the local parameteru, we have to
solve the equationFx,i(u) ¼ x0, wherex0 is the activation of
the neuron: this is a third degree equation, whose solution

can make the numerical burden of the learning algorithm
heavier. The easiest alternative consists in setting the con-
trol points uniformly spaced along thex-axis (Dx is the
step): this choice allows to reduce the third degree polyno-
mial Fx,i(u) to a first degree polynomial and the equation for
u becomes linear.

Fx, i(u) ¼ uDxþ qx, i þ 1 (11)

Now we can calculate the output of the neuron byFy,i(u).
There is another reason not to make thex-coordinates of the
control points adaptive: in fact, as we have pointed out in the
introduction, a too-large number of free parameters is the
main cause for the overfitting of the training samples: so, if
we use many tracts in building the activation function and
let them move freely, the neural model will fit also the noise.
Then the fixed parameterDx is the key tool for smoothness
control.

As we have decided to adapt only they-coordinates of the
spline knots, we must initialize them before starting the
backpropagation-style learning: to this aim, we take, along
thex-axis,P þ 1 uniformly spaced samples from a sigmoid
or from another function assuring universal approximation
capability (see Cybenko, 1989 and Stinchcombe and White,
1989): that is why we use sometimes the acronym GS,
standing for ‘‘Generalized Sigmoid’’. Outside the sampling
interval the neuron’s output will be held constant at the
values qy,1, for the negativex-coordinate, andqy,P¹1 for
the positivex. In the following, for simplicity’s sake, we
will indicate they-coordinates of the control points without
the indexy. For the whole network the acronym ASNN,
‘‘Adaptive Spline Neural Networks’’, has been chosen.

2.3. Smoothness control of the activation function

The Catmull–Rom spline based activation function can
be seen as a sub-optimal and adaptive realizationf j of the
cubic splineJ j obtained through the kernels |x|3. The prob-
lem is now the control of the degree of smoothness. The
most suitable measure of this property is given exactly by
Eq. (3), where the integration variablex is replaced by the
activation of the neuron. Considering only the single hidden

Fig. 2. Control points of the Catmull–Rom spline based activation function: along thex-axis there is a fixed stepDx. The ith tract starts withqx,i and ends
with qx,iþ3, but the controlled interval is only betweenqx,iþ1 andqx,iþ2.

262 L. Vecci et al./Neural Networks 11 (1998) 259–270

layer structure witho a neuron in the output, it holds that

sj ¼
∑n

k¼ 1
wjkxk þ wj0; (12)

with

zj ¼
sj

Dx
þ

P¹ 2
2

(13)

aj ¼ bzj c

uj ¼
sj ¹ qjx, (aj þ 1)

Dx
¼ zj ¹ aj

where the symbolb.c is the floor operator. We find for each
neuronj the local tractaj which sj belongs to, and the local
coordinate uj. Then we can write, assuming a generic
numberH of hidden units,

f (x) ¼
∑H
j ¼ 1

mj fj
∑n

k¼ 1
wjkxk þ wj0

 !
(14)

fj
∑n

k¼ 1
wjkxk þ wj0

 !

¼

qj,1 if sj # qjx, 1

1
2

¹ qj, (aj) þ 3qj, (aj þ 1) ¹ 3qj, (aj þ 2) þ qj, (aj þ 3)

� �
sj ¹ qjx, (aj þ 1)

Dx

� �3

þ
1
2

2qj, (aj) ¹ 5qj, (aj þ 1) þ 4qj, (aj þ 2) ¹ qj, (aj þ 3)

� �
sj ¹ qjx, (aj þ 1)

Dx

� �2
þ

1
2

¹ qj, (aj) þ qj, (aj þ 2)

� �
sj ¹ qjx, (aj þ 1)

Dx

� �
þ qj, (aj þ 1)

if qjx,1 , sj , qjx,P¹ 1

qjx,P¹ 1 if sj $ qjx,P¹ 1

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
Then, let us consider

∫
R

d2fj(sj)
ds2

j

" #
dsj ¼

1
Dx3

∑P¹ 3

p¼ 0
3 ¹ qj,p þ 3qj, pþ 1 ¹ 3qj,pþ 2

ÿ�
þ qj,pþ 3Þ

2 þ 3 ¹ qj,p þ 3qj,pþ 1 ¹ 3qj,pþ 2 þ qj,pþ 3

ÿ �
· 2qj, p ¹ 5qj,pþ 1 þ 4qj, pþ 2 ¹ qj,pþ 3

ÿ �
þ 2qj, p ¹ 5qj,pþ 1 þ 4qj, pþ 2 ¹ qj,pþ 3

ÿ �2
i

¼
1

Dx3

∑p¹ 3

p¼ 0
DI2

j, p þ 3DII 2
j,p þ DIII 2

j,p ¹ 3DI j, pDII j, p

ÿ
þ DI j,pDIII j, p ¹ 3DII j,pDIII j,pÞ ð15Þ

with DI j, p ¼ qj,pþ 1 ¹ qj,p, DII j,p ¼ qj,pþ2 ¹ qj,pþ1 andDIII j,p

¼ qj,pþ3 ¹ qj,pþ2. Now, it can be noticed that the smoothness
of the activation function depends on the distance between
they-coordinates of the control points and on the fixed step
Dx. The values ofqj,p,j ¼ 1,...,H,p ¼ 2,...,P ¹ 2, are adapted
during the learning process and so the only way to keep
them close is to add to the error function an extra term
penalizing a large distance between they-coordinates on
the same tract. We experimented this strategy in different
situations, but only in the case of a particular one-
dimensional function with very sparse training data
improved results were obtained: in general, the experiments
showed that this kind of constraint may represent a too
severe limitation. On the other hand, it is much easier to
tune the smoothness usingDx: with a suitable step we can
find a good degree of regularity of the function realized by
the network. Some tests we carried on indicate that too small
Dx (, 0.5) can easily result in an overfitted approximation,
but above a threshold, also if there is an optimal value, the
generalization error is rather insensitive toDx: this means
that the distance between control points can be chosen
without complex procedures like cross-validation, but just
by applying a manual tuning. In Table 1, where the general-
ization (〈g.e.〉) errors are reported in dB (10Log (S(t i ¹ f(x i))

2/
N)), we see an example relative to the problem of function
approximation varying theDx (see Hassoun, 1996)

g(x) ¼
(x¹ 2)(2xþ 1)

1þ x2 : (16)

The networks used in this test have one input two hidden
spline neurons and one linear output. The training consists
in 50 samples in the interval [¹ 5,5] and large fixed impul-
sive noise (outliers) is superimposed to the desired outputs.
The noise has uniform distribution in the range [¹ 5,5] and
added with probability 0.3 (only about the 30% of the train-
ing samples are corrupted): the training lasts 1000 epochs.
In Fig. 3a–c, the dash–dotted line represents the target func-
tion. The solid line in Fig. 3a represents the noisy training
samples. In Fig. 3b the approximation reached using
neurons havingDx ¼ (0.4,0.6,0.8) is reported, while
Fig. 3c shows the results of the approximation using neurons
havingDx ¼ (1,2,4). It is evident that when theDx value is
greater than a threshold (0.5 in this case) the results are quite
equivalent. This property, also tested in the more complex

Table 1
Simulation results for fitting function Eq. (16). The learning is stopped after
1000 iterations usingmw ¼ 0.005,mq ¼ 0.005. For eachDx value five
networks are trained

Net Dx 〈g.e.〉 (SD)

s_04 0.4 ¹ 8.43 (2.06)
s_06 0.6 ¹ 9.46 (0.06)
s_08 0.8 ¹ 9.32 (0.02)
s_1 1 ¹ 9.28 (0.02)
s_2 2 ¹ 9.16 (0.08)
s_4 4 ¹ 9.08 (0.05)

263L. Vecci et al./Neural Networks 11 (1998) 259–270

situation of Section 3.3, is very useful in real applications
where validation techniques such as cross-validation are not
practicable, e.g., too-small training sets. LetNm be the total
number of parameters whose values have been modified
during the overall learning process (this value can be calcu-
lated by an off-line analysis after the learning procedure); in
general, it is not possible to determine an analytical relation-
ship betweenNm, the initial values of the connection
weights, and the values of the training inputs, although an
unknown relation likeNm ~ w(W,X,Dx), with W represent-
ing the weights matrix of the input layer andX the net’s
inputs, may be hypothesized. When experimenting with
small initial weights, a behavior like the one of Fig. 4 can
be noticed, that is, after a few learning iterations, the span of

the spline used by each neuron converges to a small number
of control points (ifDx is large enough) centered on the
origin.An interesting property due to the learning algorithm
based on a modified backpropagation can be observed: we
can easily verify thatNm # Nfp which, in some sense, can be
viewed as a self-regularization according to Moody’s
theory. On the other hand, algorithms which simultaneously
perturb all the free parameters (Nm ¼ Nfp), are not so
convenient for the architecture we present neither from a
computational point of view nor for what concerns
regularization.

3. Simulations and discussion

3.1. Test functions

In this section we present the results of some simulations
on simple test functions. We aim at comparing the classical
sigmoid with the spline based activation function on archi-
tectures having a single hidden layer and aS-neuron in the
output. We will focus on two main aspects, that are general-
ization capability and the control of the number of free
parameters. First of all, it is worth noting that, while in a
sigmoidal network all the adaptive parameters are updated
at every step of the learning algorithm, the situation in our
networks is quite different. Referring to Appendix A for
further details, it can be observed that, at each learning
step, all the connection weights change their value, but
only four control points in each neuron are updated. This
strategy can be considered an application of the principle of
minimal disturbance (see Widrow and Lehr, 1990), stating
that the parameters of an adaptive system should be
disturbed as little as possible when a new input data is pre-
sented. As every input to the network, after the weighted
summation, involves only a limited segment of thex-axis of
the activation function, we should move only the control
points relative to that segment, without altering the shape
of the neuron’s output in other intervals.

Fig. 3. Approximations of function Eq. (16), the dash–dotted lines repre-
sents the target function. (a) The solid line represents the 50 training points
corrupted by large additive impulsive noise (outliers). (b) The solid lines
represent the 200 points networks’ output withDx ¼ (0.4,0.6,0.8). (c) The
solid lines represent the 200 points networks’ output withDx ¼ (1,2,4).

Fig. 4. Activation function of the spline based neuron approximating func-
tion Eq. (16): of the 28 control points (the stars), only 10 have been adapted
by the learning algorithm (Dx ¼ 0.4).

264 L. Vecci et al./Neural Networks 11 (1998) 259–270

A second observation is that an arbitrary number of
control points can be initially taken (the value 28 in our
tests was determined empirically), because just some of
them (in general in an interval centered on the origin) are
actually moved during the learning, while the others are
never involved by any input data and simply join the activa-
tion function to its asymptotes: thus, the method is not dee-
ply influnced by this choice except that if too few control
points are taken more hidden neurons may be required.

The special behavior of the adaptation mechanism is
shown for the one-dimensional example of function
Eq. (16): if we have a look at Fig. 4, where the activation
function of the adaptive hidden neuron is represented, we
can see that many of the control points were not updated by
the learning algorithm because no input data involved their
intervals. So the number of coefficients which were changed
by backpropagation is only 14. This example teaches we
must not be misled by the fact that we took originally 28
points to control the output of a neuron: the learning
mechanism is able to select those ones which are effectively
useful to the approximation; in this sense the architecture
seems to be able to fit the effective number of free para-
meters (see Moody, 1992) to the training set it has to deal
with. This is a very welcome property: as we pointed out in
the introduction the matching between the size of network
and the complexity of the problem is the key for a good
generalization performance.

The results of further simulations on two-dimensional
functions are arranged in Tables 2 and 3. The first column
includes the different types of networks which were tested:
N_x stands for a classical MLP withx hidden units, while
s_x is an ASNN withx hidden neurons. The first column
contains theNl, that is the number of parameters updated at
every learning cycle, while the second is relative toNm. As

we have pointed out at the beginning of the paragraph, for
the sigmoidal MLP we haveNl ¼ Nm, while for GS neurons
the situation is different: in factNl is simply obtained by
summing four control points for each GS neuron to the
number of connection weights, whileNm can be calculated
only at the end of the training, this time adding to the num-
ber of connection weights the control points which have
been effectively moved for every GS neuron. The tests are
performed stopping the training when¹20 dB,¹22 dB and
¹24 dB in the learning phase are reached (〈l.e.〉 is the num-
ber of necessary learning epochs):T50 is made of 50 samples
lying in the square [¹ 1, þ 1][¹ 1, þ 1], obtained by a
uniform probability density with zero mean and 0.1 variance
Gaussian noise added to the desired outputs. The criterium
for the computation of generalization error mean, expressed
in dB, and variance (〈g.e.〉 and j2

g.e.) is based on the
inizialization of 20 networks: if at least half of this group
reaches the threshold for training stop (¹20 dB or¹22 dB
or ¹24 dB), 〈g.e.〉 andj2

g.e. are calculated averaging on the
best 10 networks over an equally spaced grid of 441 points
in [¹ 1,þ 1][¹ 1,þ 1], otherwise no values are reported in
the corresponding columns. If 50% of the networks fail to
reach¹ 20 dB, the architecture is considered unsuccessful;
otherwise training is carried on and the remaining two
thresholds are tested. It is also considered the situation
after 50 000 epochs, except for networks that can even
reach ¹ 24 dB.

The first function, plotted in Fig. 5a, is

g(x,y) ¼ sin(2px) þ 4(y¹ 0:5)2 (17)

while the second test is on the two-dimensional Gabor function

g(x,y) ¼ e¹ (x2 þ y2)cos[0:75p(xþ y)] (18)

The spline networks are chosen withDx ¼ 0.5 and

Table 2
Simulation results for fitting function Eq. (17)

Net Nl Nm ¹20 dB ¹22 dB ¹24 dB 50 000 epochs

〈l.e.〉 〈g.e.〉 j2
g.e. 〈l.e.〉 〈g.e.〉 j2

g.e. 〈l.e.〉 〈g.e.〉 j2
g.e. 〈g.e.〉 j2

g.e.

N_4 17 17 – – – – – – – – – – –
N_6 25 25 – – – – – – – – – – –
N_8 33 33 16 889 ¹10.90 1.58·10¹3 26 635 ¹11.51 1.39·10¹3 – – – ¹11.64 1.26·10¹3

N_10 41 41 10 868 ¹10.60 2.98·10¹3 14 093 ¹10.76 4.32·10¹3 25 757 ¹10.52 5.31·10¹3 – –
N_15 61 61 5551 ¹10.88 2.31·10¹3 8723 ¹11.82 1.31·10¹3 19 059 ¹12.26 9.98·10¹4 – –
s_2 17 23 9403 ¹15.12 2.65·10¹7 – – – – – – ¹15.68 3.46·10¹8

s_4 33 43 3280 ¹14.79 9.07·10¹5 11 067 ¹15.98 1.79·10¹5 – – – ¹16.22 1.17·10¹5

Table 3
Simulation results for fitting function Eq. (18)

Net Nl Nm ¹20 dB ¹22 dB ¹24 dB 50 000 epochs

〈l.e.〉 〈g.e.〉 j2
g.e. 〈l.e.〉 〈g.e.〉 j2

g.e. 〈l.e.〉 〈g.e.〉 j2
g.e. 〈g.e.〉 j2

g.e.

N_8 33 33 8458 ¹14.89 2.37·10¹4 – – – – – – ¹17.30 1.15·10¹4

N_11 45 45 3186 ¹14.02 2.60·10¹4 29 936 ¹17.34 5.45·10¹5 – – – ¹17.80 6.09·10¹5

N_15 61 61 2406 ¹13.31 4.15·10¹4 20 740 ¹17.53 4.60·10¹5 – – – ¹16.90 3.47·10¹4

s_4 33 43 3194 ¹17.85 7.94·10¹6 13 476 ¹19.68 2.09·10¹5 – – – ¹13.94 1.26·10¹4

265L. Vecci et al./Neural Networks 11 (1998) 259–270

compared to sigmoidal networks on the basis ofNl andNm; a
classical MLP architecture with more free parameters (Nl ¼

Nm ¼ 61) is also presented. Also if the input space is two-
dimensional, the simulations on function Eq. (17) are an
important example of how some extra dimension can be
useful to improve the quality of the approximation, also if

the target has a simple additive structure; for function
Eq. (18) a nonlinear transformation over two dimensions
is not sufficient and four hidden neurons are considered to
obtain a good performance on the data.

The spline network with two hidden neurons should be
compared to sigmoidal networks with four and six hidden
neurons which are not able to reach¹20 dB and so are
discarded. It is clear from〈g.e.〉 columns that our architecture
has a lower generalization error and that it is also more con-
venient for what concerns implementation problems: in fact
the size in terms of hidden units is greatly reduced.

A very remarkable feature of GS neurons is that they
seem to produce a more tractable error surface, which
leads to a narrower variance of the generalization error
after the learning. Although the error function depends on
many variables and it is quite difficult to study in theory, the
experimental results give the impression of a smooth shape,
on which it is easier to end the training close to the same
point of minimum. This fact is particularly evident when the
training is stopped at an early stage (when¹20 dB are
reached) and in the case of the additive target function;
only for the Gabor function, after 50 000 epochs values of
j2

g.e. for sigmoidal networks have generally a better
behavior, but it is also clear that the spline network is
overtrained.

A related advantage in the use of GS neurons is the train-
ing speed:Nl andNm being equal, our architecture is often
faster in reaching the thresholds and it is outpaced only by
the network with 15 hidden sigmoids which has many more
adaptive parameters. Adaptive activation functions reveal
themselves to be more interesting in applications where
learning speed is a key factor, together with an economical
architecture in terms of hidden units.

3.2. Back and Tsoi system

Now we are going to test the proposed architecture on a
more complex problem, that is the identification of a system

Fig. 5. (a) The additive function of Eq. (17). (b) Approximation of function
Eq. (17) using two spline based hidden neurons: it can be noticed a good
agreement with the target.

Fig. 6. Training error for the Back and Tsoi system: comparison of architectures with the same number of hidden units.

266 L. Vecci et al./Neural Networks 11 (1998) 259–270

proposed by Back and Tsoi (1993), made of a IIR linear
filter followed by an instantaneous nonlinearity.

z[t] ¼ 0:0154u[t] þ 0:0462u[t ¹ 1] þ 0:0462u[t ¹ 2]

þ 0:0152u[t ¹ 3] þ 1:99z[t ¹ 1] ¹ 1:572z[t ¹ 2]

þ 0:4583z[t ¹ 3] ð19Þ

y[t] ¼ sin
p

2
z[t]

� �
The temporal dynamic is obtained externally feeding into
the networku½tÿ,u½t ¹ 1ÿ,...,u[t ¹ 5] andy[t ¹ 1],...,y[t ¹ 5].
Fixing arbitrary initial conditions foru andy, we track the
behavior of the system and take 1000 samples to be used as
the training set; a second group of independently obtained
1000 samples is the test set. Experiments with just five
hidden neurons give excellent results both in terms of
training error and of generalization error (Figs. 6 and 7
and Table 4) with a total number of 96 coefficients updated
by backpropagation. The line at¹15 dB in Fig. 6 represents

the limit of the best performance reached by networks with
five sigmoidal hidden units. If we want to obtain a MSE of
approximately¹40 dB in no more then 15 000 epochs, we
are forced to use 20 sigmoidal hidden neurons, more or less:
this means an architecture involving 261 free parameters all
of which must be adapted leading to a very long training
time and to a more dangerous situation as far as general-
ization is concerned; besides the architecture is quite expen-
sive if compared to the solution using five spline based
neurons.

3.3. Noisy characters recognition

The last experiment has been carried out in order to test
the sensitivity of theDx parameter with respect to the
generalization (or bias vs. variance) performances of the
ASNN compared with the standard MLP.

The neural network training set consists in ten noisy
characters (the digits 0–9) defined as a 73 7 pixels matrix
while the target is the 4-bit binary code of the respective
input ((0)–0000,(1)¹0001,...,(9)¹1001). The noise is
obtained randomly flipping 10% of the input pixels (this
class of noise is usually calledsalt and peppernoise). For
the learning phase we use 100 noisy realization for each
character, so in total we have 1000 noisy patterns.

The simulations are performed by training several ASNN
of different size and standard MLPs using (about) the same
number of adaptable parameters; so at the end of each train-
ing phase a similar number of parameters are effectively
adapted using, also, a close CPU time for both sort of
networks.

Using the same notation of the previous experiments, the
networks are denoted as N_y for standard MLP and Sx_y for
the ASNN. The symboly represents the number of hidden
neurons, while, for the ASNN,x is related to theDx value.
MLP networks with 20 and 22 hidden neurons are compared
with ASNN with 14, 16 and 18 hidden units using several
Dx values. Considering all weights and offsets, the MLP
with 49 inputs 20 hidden neurons and four output neurons
(N_20) has 1084 free parameters, while the N_22 has 1192
free parameters. In the spline networks, for each back-
propagation learning iteration, the four spline activation
function control points are also adapted, thus, respect to
the standard MLP, we must add four adaptable parameters
for each neuron.

In order to have statistical information each experiment is
repeated five times using different weights initialization.

Fig. 7. (a) Generalization capability of the proposed architecture with five
GS adaptive neurons: the dashed line, representing the network’s output,
overlaps exactly the system’s output (solid line) on 50 samples of the test
set. (b) Generalization capability of the proposed architecture with five GS
adaptive neurons: the plot represents the difference between the output of
the Back and Tsoi system and the output of the network.

Table 4
Experiments with the Back and Tsoi system: average generalization error
for a network with five spline based neurons

Epochs 〈g.e.〉 (dB)

1000 ¹40.493
1500 ¹41.192
2000 ¹41.531

267L. Vecci et al./Neural Networks 11 (1998) 259–270

The result are reported in terms of both standard deviation
(SD) and average of the MSE value (〈MSE〉).

We train all the networks until the〈MSE〉 (averaged over
the last 100 epochs) reaches the value of¹25 dB while,
during the learning phase, different realizations of salt and
pepper noise are added to the input patterns. The percentage
of flipped pixels is evaluated considering the entire epoch
such that the inverted pixels number for each character can
be different for each training step.

The generalization performance are evaluated in terms of
generalization error〈g.e.〉 and in terms of correct character
classification percentage (hit-rate), computed over 1000
forward phase epochs (10 000 characters) where different
realizations of salt and pepper noise are used.

The results are reported in Tables 5 and 6. As we can see
from Table 5 the generalization performance of the ASNN
are better in all the cases. As pointed out above, the choice
of theDx value is not critical. In fact, varyingDx from 0.6 to
2.0, close generalization performances are obtained. We can
note also that, to reach the specific learning stop criterion,
we need less learning iterations; so the network is trained
with a small number of noisy input realizations but with
very little degradation of the generalization properties.
This propriety is very appreciable in real world problems
when the noisy training set is available in a small number of
examples.

All training epochs are performed using the weights
learning ratemw ¼ 0.005, both for standard MLP and
ASNN, and using the same value for the spline control
points learning ratemq. The mw and mq are empirically
determined as optimal values for this class of problem
considering the speed of the convergence and the
asymptotic error.

4. Conclusions

This paper has presented the most important theoretical
properties of a new architecture based on adaptive activa-
tion functions, realized through Catmull–Rom cubic
splines. The use of cubic splines in single hidden layer
structures can be justified in the framework of regularization
theory when introducing additive models, but we have to
face with two main drawbacks: first of all we build a model
made of a sum of justn functions, wheren is the dimension
of the input space, and this does not guarantee universal
approximation; then we are obliged to use a lot of kernels
|x|3, which impose a very high hardware complexity. On the
contrary, we propose to add, if needed, some more dimen-
sions and to realize the whole cubic spline, working on a
particular direction, in a single neuron: to make the imple-
mentation easier we do not use the exact form imposed by
the theory, but a sub-optimal solution made of local cubic
tracts with the same spacingDx. This parameter, whose
choice is not critical above a certain threshold, as reported
by experimental results, seems to control the smoothness of
the activation functions and the generalization ability. We
also pointed out that the mechanism of adaptation of the
activation functions works only on local tracts, so that if a
segment on thex-axis is never involved by any input data,
its four control points will never be updated. This fact,
together with the reduction in the network’s size due to
the augmented expressive power of each neuron, is the
reason for a rather low number of free parameters respect
to sigmoidal networks (especially for input spaces with high
dimensionality). Besides, the local character of the
adaptation is an application of the principle of minimal dis-
turbance, since a new input data does not modify the whole

Table 5
Generalization performance using networks with closed number of free parameters: 1084 for the standard MLP and 1064 for the ASNN; for variousDx values.
The learning stop criterion is: MSE¼ ¹20 dB to¹26 dB.mw ¼ 0.005,mq ¼ 0.005. Salt and pepper noise¼ 10%. The training is performed using 100 fixed
noise samples for each character

Net Dx ¹20 dB ¹22 dB ¹24 dB ¹26 dB

〈l.e.〉 3 103 MSE 〈g.e.〉 〈hr%〉 〈l.e.〉 MSE 〈g.e.〉 〈hr%〉 〈l.e.〉 3 103 〈g.e.〉 〈hr%〉 〈l.e.〉 3 103 MSE 〈g.e.〉 〈hr%〉
N_20 ¹ 228 ¹17.5 93.47 346 ¹18.2 94.29 520 ¹18.7 94.80 726 ¹19.0 95.12
s1_18 0.4 102 ¹14.9 87.41 142 ¹15.1 88.21 198 ¹15.2 88.34 290 ¹14.9 87.31
s2_18 0.8 66 ¹17.7 94.29 86 ¹17.94 94.61 108 ¹18.1 94.80 136 ¹18.3 94.95
s3_18 1.2 60 ¹18.6 95.65 70 ¹18.8 95.83 88 ¹19.0 95.93 116 ¹19.2 96.07
s4_18 1.6 60 ¹18.8 95.81 70 ¹19.0 95.97 90 ¹19.2 96.14 116 ¹19.3 96.14
s5_18 2.0 70 ¹18.2 95.91 94 ¹18.6 96.20 136 ¹18.9 96.33 210 ¹19.1 96.37

Table 6
Generalization performance using different size networks (Dx fixed for the ASNN). Training MSE¼ ¹26 dB

Net Dx No. of
adapt. param.

〈l.e.〉 3 103 (SD) 〈g.e.〉 (SD) 〈No. of
wrong patterns〉

Hit-rate % (SD)

N_20 – 1084 726.00 (8.29) ¹19.05 (0.27) 487.60 (35.62) 95.12 (0.36)
N_22 – 1192 766.00 (70.26) ¹19.30 (0.27) 441.80 (27.57) 95.58 (0.28)
s4_14 1.6 832 120.00 (6.32) ¹18.70 (0.37) 438.00 (40.53) 95.62 (0.41)
s4_16 1.6 948 130.00 (8.94) ¹19.01 (0.34) 421.80 (37.72) 95.78 (0.38)
s4_18 1.6 1064 116.00 (4.10) ¹19.31 (0.25) 386.20 (23.99) 96.14 (0.24)

268 L. Vecci et al./Neural Networks 11 (1998) 259–270

shape of the neuron’s output, but only a well-defined
portion.

It is also important to notice that the way the nonlinearity
tracks the target improves learning speed and convergence
properties, which means that we need fewer learning epochs
and that it is more difficult to end the training in very bad
local minima: in general, networks with GS neurons having
a good behavior on test sets are easier to find, as if the error
surface had a more regular aspect. Simulations with simple
test functions, with the Back and Tsoi nonlinear system
and with a character recognition problem confirm these
expectations.

Acknowledgements

The authors would like to acknowledge the anonymous
reviewers for they useful suggestions and comments that
improved this manuscript. This work was supported in
part by Ministero dell’Università e della Ricerca
Scientifica e Tecnologica(MURST) of Italy.

Appendix A

Let us now explain the learning algorithm, based on the
well known backpropagation, extending the use of spline
based activation functions to architectures with more than
just one hidden layer.

ConsideringL total layers and indicating each of them
with the indexl, l ¼ 1,...,M, we can rewrite Eq. (13) as

z(l)
k ¼

s(l)
k

Dx
þ

P¹ 2
2

(A.1)

a(l)
k ¼ bz(l)

k c,

a(l)
k ¼ z(l)

k ¹ a(l)
k

wherek is the index of thekth neuron of the layer. Beingp
the learning step, the adaptation follows the usual rules.

w(l)
kj [pþ 1] ¼ w(l)

kj [p] þ Dw(l)
kj [p] (A.2)

q(l)
k, (a(l)

k þ m)
[pþ 1] ¼ q(l)

k, (a(l)
k þ m)

[p] þ Dq(l)
k, (a(l)

k þ m)
[p]

m¼ 0, 1,2,3

Referring to Fig. 8, we putx(l)
k ¼ F(l)

k,a(l)
k

(u(l)
k), which is a third

order polynomial; if the output is multidimensional and the
kth component of the target vector istk, we can write,
omitting the timep for the sake of readibility

e(l)
k ¼

tk ¹ x(l)
k l ¼ M∑Nl þ 1

m¼ 1d
(l þ 1)
m w(l þ 1)

mk l ¼ M ¹ 1, …,1

8<: (A.3)

d
(l)
k ¼ e(l)

k

dFðlÞ
k,a(l)

k

(u)

du

�����
u¼ u(l)

k

1A 1
Dx

,

0@
Dw(l)

kj ¼ mwd
(l)
k x(l ¹ 1)

j

with 0 # k # Nl and 0# j # Nl ¹1. If we indicate withcðlÞ
k,m(.)

themth column of the matrix in Eq. (10), the adaptation of
the control points is ruled by

Dq(l)
k, (a(l)

k þ m)
¼mqe(l)

k

]FðlÞ
k, a(l)

k

]q(l)
k, (a(l)

k þ m)

0@ 1A¼ mqe(l)
k c(l)

k,m(u(l)
k): (A.4)

The adaptation rates aremw for the connection weights and
bias andmq for the control points. The control point with
index 0,1,P ¹ 1 andP are fixed.

Appendix B

The cubic spline Eq. (8) obtained through regularization
theory can be written in theith span, wherea iþ1j # w jx ¼

x̃ # a iþ2j, , as∑N
h¼ 1

chlwjx¹ ahjl
3
¼ c1(x̃¹ a1j)3 þ … þ ci(x̃¹ aij)3

þ ci þ 1(x̃¹ ai þ 1j)
3 ¹ ci þ 2(x̃¹ai þ 2j)

3 ¹ ci þ 3(x̃¹ ai þ 3j)
3

¹ … ¹ cN(x̃¹ aNj)3: (B.1)

Collecting the terms of equal degree we obtain the simpler
form∑N
h¼ 1

chlwjx¹ ahjl
3
¼ Ax̃3 þ Bx̃3 þ Cx̃þ D ; (B.2)

coefficients A, B, C, and D depend on the whole setc1,...,cN.
We can reproduce the span in the interval [a iþ1j,a iþ2j] by

a Catmull–Rom cubic spline: we just need four control
points Qij1, Qij2, Qij3 and Qij4: Q ij 2 and Q ij3 lie on the
curve whileQ ij1 andQ ij4 are only dummy points. Equally
spacing thex-coordinates ofDxij ¼ ai þ 2j ¹ a iþ1j and
putting qxij2 ¼ a iþ1j, qxij 3 ¼ a iþ2j, we easily calculate the
local coordinateu by Eq. (11). Imposing the equality

Fig. 8. Schematic structure of the GS neuron: GS1 computes the parameters
uk

(l) andak
(l), while GS2 computes the neuron’s output through the spline

patch determined by GS1.

269L. Vecci et al./Neural Networks 11 (1998) 259–270

between Eq. (B.2) and theFy of the Catmull–Rom

1
2

¹ qyij1 þ 3qyij2 ¹ 3qyij3 þ qyij4

ÿ � x̃¹ ai þ 1j

Dxij

� �3

þ
1
2

2qyij1 ¹ 5qyij2 þ 4qyij3 ¹ qyij4

ÿ � x̃¹ ai þ 1j

Dxij

� �2

þ
1
2

¹ qyij1 þ qyij3

ÿ � x̃¹ ai þ 1j

Dxij

� �
þ qyij2

¼ Ax̃3 þ Bx̃2 þ Cx̃þ D (B.3)

we obtain a linear system of four equations where the
unknowns are they-coordinates of the pointsQ. These
calculations show that a Catmull–Rom spline with properly
chosen control points is equivalent to the optimal cubic
spline Eq. (B.1) everywhere betweena1j andaNj (outside
this interval we prefer to use a bounded function instead of a
polynomial). Of course there’s no use in ‘‘translating’’
Eq. (B.1) in a structure of similar or even greater com-
plexity: the strategy we adopted leads to a much more
simplified form that, although sub-optimal from the point
of view of regularization theory, is still able to obtain a good
performance thanks to its adaptation capabilty.

References

Amari, S. (1993). A universal theorem on learning curves.Neural Net-
works, 6, 161–166.

Amari, S., & Murata, N. (1993). Statistical theory of learning curves under
entropic loss criterion.Neural Computation, 5, 140–153.

Back, A.D., & Tsoi, A.C. (1993). A simplified gradient algorithm for IIR
synapse Multilayer Perceptron.Neural Networks, 5, 456–462.

Campolucci, P., Capparelli, F., Guarnieri, S., Piazza, F., & Uncini, A.,
Neural networks with adaptive spline activation function.Proceedings
of IEEE MELECON 96, Bari Italy, pp. 1442–1445.

Chen, C. T., & Chang, W. D. (1996). A feedforward neural network with
function shape autotuning.Neural Networks, 9, 627–641.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal
function. Mathematics of Control, Signals, and Systems, New York:
Springer Verlag, pp. 303–314.

Geman, S., Bienenstock, E., & Doursat, R. (1992). Neural networks and the
bias/variance dilemma.Neural Computation, 4, 1–58.

Girosi, F., Jones, M., & Poggio, T. (1995). Regularization theory and neural
networks architectures.Neural Computation, 7, 219–269.

Guarnieri, S., Piazza, F., & Uncini, A. (1995). Multilayer neural networks

with adaptive spline-based activation functions.Proceedings of the
International Neural Network Society Annual Meeting WCNN 95,
Washington D.C., USA, pp. I695–I699.

Guyon, I., Vapnik, V., Boser, B., Bottou, L., & Solla, S. A. (1992).
Structural Risk Minimization for Character Recognition. In J. E.
Moody, S. J. Hanson, and R. P. Lippmann, eds,Advances in Neural
Information Processing Systems, 4, Morgan Kauffmann, pp. 471–479.

Hassoun, M. H. (1996).Fundamentals of Artificial Neural Networks.
Cambridge, MA: MIT.

Holden, S.B., & Rayner, P.J.W. (1995). Generalization and PAC learning:
some new results for the class of generalized single-layer networks.
IEEE Transactions on Neural Networks, 6 (2), 368–380.

Hwang, J.-N., Lay, S.-R., Maechler, M., Martin, R.D., & Schimert, J.
(1994). Regression modeling in back-propagation and projection pur-
suit learning.IEEE Transactions on Neural Networks, 5 (2), 342–353.

Moody, J.E. (1992). The effective number of parameters: an analysis of
generalization and regularization in nonlinear learning systems. In J.E.
Moody, S.J. Hanson, & R.P. Lippmann, eds,Advances in Neural
Information Processing Systems, 4, Morgan Kauffmann, pp. 847–854.

Moody, J.E., & Utans, J. (1994). Architecture selection startegies for
neural networks: application to corporate bond rating prediction.
In A.N. Refenes, ed.,Neural Networks in the Capital Markets, John
Wiley.

Niyogi, P., & Girosi, F. (1996). On the relationship between generalization
error hypothesis complexity and sample complexity for radial basis
functions.Neural Computation, 8, 819–842.

Piazza, F., Smerilli, S., Uncini, A., Griffo, M., & Zunino, R. (1996). Fast
spline neural networks for image compression. InWIRN96, Vietri sul
Mare, Italy.

Piazza, F., Uncini, A., & Zenobi, M. (1992). Artificial neural networks with
adaptive polynomial activation function.Proc. of the IJCNN, vol. 2,
Bejing, China, pp. 343–349.

Piazza, F., Uncini, A., & Zenobi, M. (1993). Neural networks with digital
LUT activation function,Proc. of the IJCNN, vol. 2, Nagoya, Japan,
pp. 1401–1404.

Poggio, T., & Girosi, F. (1990). Networks for approximation and learning.
Proceedings of the IEEE, 78 (9), 1481–1497.

Poggio, T., & Girosi, F. (1990). Regularization algorithms for learning that
are equivalent to multilayer networks.Science, 247, 978–982.

Reed, R., Marks II, R.J., & Oh, O. (1995). Similarities of error regulariza-
tion, sigmoid gain scaling, target smoothing, and training with jitters.
IEEE Transactions on Neural Networks, 6 (3), 529–538.

Stinchcombe, M., & White, H. (1989). Universal approximation using
feedforward networks with non-sigmoid hidden layer activation
functions. Proc. of the IJCNN, vol. 1, Washington D.C., USA,
pp. 613–617.

Widrow, B., & Lehr, M.A. (1990). 30 Years of adaptive neural networks:
perceptron, madaline, and backpropagation.Proceedings of the IEEE,
78 (9), 1415–1442.

Wolpert, D.H. (1995). On bias plus variance. Technical Report SFI TR 95-
08-074, Santa Fe Institute.

270 L. Vecci et al./Neural Networks 11 (1998) 259–270

