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Fast Neural Networks Without Multipliers
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and Aurelio Uncini, Member, IEEE

Abstract— The paper introduces multilayer perceptrons with
weight values restricted to powers-of-two or sum of power-of-
two. In a digital implementation, these neural networks do not
need multipliers but only shift registers when computing in
forward mode, thus saving chip area and computation time. A
learning procedure, based on back-propagation, is presented for
such neural networks. This learning procedure requires full real
arithmetic and therefore must be performed off-line.

Some test cases are presented, concerning MLP’s with hidden
layers of different size, on pattern recognition problems. Such
tests demonstrate the validity and the generalization capability
of the method and give some insight into the behavior of the
learning algorithm.

1. INTRODUCTION

N the past years, artificial neural networks (NN) have been

applied to a variety of problems in many fields, most of
them calling for an efficient hardware implementation. Using
electronic or optical techniques, several different approaches
have been proposed to face this problem. Among them, the
digital approach is the most popular. It consists in the numer-
ical simulation of NN’s using digital VLSI hardware, parailel
computers, or traditional computers. Using this approach, it is
possible to take advantage of state-of-the-art VLSI and ULSI
implementation techniques, with several advantages over the
analog implementation [1].

One of the major problems of digital architectures imple-
menting NN’s, affecting both performance and chip area, is
the presence of multipliers. In almost every neural model, in
fact, the elementary processor (neuron) computes an activation
function on the weighted sum of its inputs. While weights are
stored and recalled easily in a local memory, the activation
function can also be easily computed through and look-up
table and sums are performed quickly using a limited amount
of hardware; the multiplications between inputs and weights
can be the bottle-neck of the system. They are slow compared
to other operations and the multipliers require of lot of chip
area if a direct VLSI or ULSI implementation is planned. A
possible solution to this problem has already been exploited
in digital filter design: it consists in avoiding multiplications
using integer weights whose values are power-of-two or sums
of power-of-two [1], [2]. Using such weights, it is possible to
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substitute multiplications with simple shifts or shift-and-add
operations, which are much faster and require less hardware.
In this paper we demonstrate the feasibility of this approach
for the multilayer perceptron (MLP) [3] with binary outputs,
and present a learning procedure based on backpropagation
(BP) [4] to obtain a MLP with such weights. This learning
procedure requires full real arithmetic and therefore must be
performed off-line. Once the weights are computed a specific
problem, the corresponding power-to-two values can be loaded
into the multilayer neural network that will be run in forward
mode, processing the data. In the following, after briefly
presenting a notation for MLP description, we shall discuss the
problem of assigning the neurons to the available processing
elements, describe in detail the learning algorithm, and present
several test cases concerning MLP’s of different sizes and
with different numbers of processing elements. These tests
confirm the validity of previous results [5], indicate the validity
of the method, and give some insight into the behavior and
generalization capabilities of the learning algorithm.

II. MULTILAYER PERCEPTRON (MLP)

Many NN models have been proposed in technical literature;
among them the MLP is one of the most widely used because
a simple and powerful learning algorithm, known as back-
propagation has been devised for it. Here we shall briefly
describe this model and we shall introduce a notation for its
description that will be followed throughout the paper.

In the MLP, all neurons are grouped in sequentially con-
nected layers, numbered from O to M. Let N, be the number
of neurons- belonging to the generic sth layer. Each neuron
is connected to all neurons of the two adjacent layers. The
neurons of layer 0 (input layer) do not perform computations
but only feed input signals into neurons of layer 1. Layer M
is the output layer, from where the network response comes.

Each MLP neuron is characterized by one output and many
inputs, which are the neuron outputs of the preceding layer. Let
o0 (%) denote the output of kth neuron of the sth layer, then the
computation performed by each neuron can be expressed as:

Ns—l
=1
o) = f(netk(s)) @3]

where net(®) is the weighted sum of the k neuron of the
sth layer, wkj(s) is the weight by which the same neuron
multiplies the output Oj(s—l) of the jth neuron of the previous
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layer, 9;(®) is the offset of the kth neuron of the sth layer
and f(.) is a nonlinear, bounded function, often the sigmoid
function.

When processing data, the MLP accepts an input vector
1 and produces an output vector o. From the above con-
siderations, % is equal to o(®), whose components are 0;(®,
k = 1,---,No. Applying iteratively equations (1) and (2),
starting from the first (s = 1) to the last (s = M) layer, an
output vector o, equal to o(*), is obtained, whose components
are o) M) k = 1,---, Nypy,.

The backpropagation [4] is the most widely used training
algorithm in MLP networks. Using an iterative steepest descent
technique, it is able to compute the values of the weights and
offsets which approximate a desired network behavior. BP
requires a number of forward moves (computation of o(*)
for given input vector), each followed by a backward move,
during which weight and offset adjustments occur to adapt the
network to a desired output vector d. This operation can be
expressed in its simplest form by the following formulae:

di — 0x1® s=M;
(s) — }) Nst1
o' = wFVE T =1 M1 €)
ij=1

5 = oy f! (netk(s))

Awp; = 76, )0; =D k=1,---,N,,

j=17"'7Ns—l (5)

where f(’,) is the derivative of the activation function f(-),

n is a constant called the learning rate and Awkj(s) is the
weight change. Similar formulate are used to adjust offsets. By
applying iteratively equations (3)—(5) from the last (s = M)
to the first (s = 1) layer, the backward move is completed.

III. NEURONS AND NEURAL
NETWORKS WITHOUT MULTIPLIERS

A. Weight Values

The starting point of our approach to the realization of
fast NN without multipliers are (1) and (2). The basic ac-
tivity of a single neuron consists in calculating the weighted
sum net,(*) of its inputs and then computing the activation
function f(-). The multiplications concern only the weights
and the corresponding inputs, not the offset. To avoid numeric
multiplications, the weight values must be restricted to power-
of-two (or sums of power-of-two).

In this case, the multiplications can be substituted by shift,
or shift-and-add operations whose hardware implementation is
very simple and much faster than multiplication. The number
of bit-shifts that can be performed equals the difference
between the maximum and the minimum power-of-two term.
In the case of the sum of two power-of-two terms, two shift
registers and one adder are needed.

Fig. 1 shows the degree of discretization and nonuniformity
of the value distribution for both single power-of-two and sum
of two power-of-two terms, with a maximum bit-shift of six.
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Fig. 1. The discretization obtained using power-of-two terms. The permitted
values actually used in the presented method are divided by 64.

Throughout the paper, however, we will use a normalization
procedure yielding weights, whose absolute values are less
than or equal to a given value (usually one).

As they are not involved in multiplications, the offset values
can still be real numbers, thus providing more “degrees of
freedom” in learning. The dual case in which inputs to the
neurons and not weights are restricted to power-of-two will
not be considered in the paper, although it could be a matter
for further research.

In the presented results we shall consider the case of a single
power-to-two, which represents the most favorable case for
hardware implementation, as additional sums are eliminated.
It also represents the most difficult case as far as learning is
concerned because the discretization is extreme. The learning
algorithm proposed in the next section, however, is applicable
also to more general NN’s, whose weights are sums of two or
more power-of-two terms. Let us denote with W, the set of
admissible weight values:

W,={zls=R 27P;Re{-1,0,1};p€ {0,1,---,5}}
(6)

where S is the number of bits that can be shifted. It can be
noted that this definition constrains the weights absolute value
to be less than or equal to one, which is easily obtained by
scaling weights and offsets.

Extending admissible weight values to the sum of two
power-of-two terms leads to the set:

Wsr = {z|t = R'27? + R"274 R ,R" € {-1,0,1};
p€{0117"'7‘s};q€{Oale"':T}} (7)

where § and T are the maximum number of shifts in each
shift register, respectively, and the maximum weights absolute
value is less than or equal to two.

It is also worth noting that increasing the number of power-
of-two terms of the sum enables the approximation of any
number in a given interval to a given error. The expansion
in the sum of more than two power-of-two terms has been
recently proposed in digital filter design [6], limited to a small
subset of weights to fulfil the filter requirements. Such expan-
sion, however, would substantially weaken the advantages of
this technique, owing to the increased complexity of weight
management and the higher number of operations.
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B. Neurons and Processing Elements

In a digital implementation of NN’s, one of the basic
problems is the assignment of the neurons to the actuai
processing elements (PE) that constitute the available digital
hardware. Depending on the number of PE’s, the possible
choices span from the assignment of a single neuron to each
PE to a single PE performing the simulation of the whole NN.
At the former extreme there are VLSI implementations of high
granularity, while at the latter there are software simulations
on a single CPU computer. In the middle there are many
possible solutions, implemented directly on VLSI chips, or
on many connected microprocessors running in parallel, or on
parallel or multi-CPU computers, characterized by assigning
the simulation of more than one neuron to every PE with
various possible levels of granularity.

In a fast digital implementation the activation function f(.)
is often computed through a look-up table (LUT) contained in
every PE. Depending on the granularity of the NN, i.e. on the
number of neurons that are assigned to each PE, and on the
way neurons are assigned to PE’s, we may consider different
cases:

* a distinct LUT for every neuron;

« a LUT common to the neurons of each layer;

* a LUT common to the neurons of each vertical “slice”

of the MLP;

* a LUT common to the whole NN.

Fig. 2(a)-(d) graphically show these four possible assign-
ments of MLP neurons to PE’s and thus the possible LUT
assignments to neurons. Cases (a) and (d) are straightforward,
while cases (b) and (c) are derived by architectures imple-
menting MLP and found in the literature [7], {8]. Of course,
other assignments of neurons to PE’s can be found, and the
presented learning algorithm can be easily adapted to deal with
any possible assignment. Since each LUT allows a distinct
scaling of all the weights of the neurons using that LUT, the
NN has more degrees of freedom with a greater number of
LUT’s. This means a better convergence in learning, as test
cases presented in the next sections will show.

IV. LEARNING ALGORITHM

A. Basic Ideas

Given a mapping between input and output spaces of the
MLP and a training set of pairs (i,,d,) of inputs and outputs
representing or sampling the mapping, the problem is to find
the right MLP architecture (number of layers and of neurons
per layer) and its weights (limited to some Ws or Wg r
ensemble) and offsets values able to perform the desired
mapping with minimum error.

The starting point for the learning algorithm is the solution
of the same mapping with a classical MLP having continuous
weights, applying BP as the learning algorithm. We shall not
address here the problem of finding the right number of layers
and neurons per layer, but we shall assume that a continuous
solution can be found.

The main ideas behind the proposed learning algorithm are
two: the first is to scale the weights of the neurons referring
to the same LUT in such a way as to maximize the match
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®) (d)

Fig. 2. Various possible assignments of neurons to processing elements
having one look-up table: (a) single; (b) “slice”; (c) layer; (d) global.

between the continuous solution and the discrete one. During
this scaling, weight absolute values are also restricted to be
less than or equal to one. This approach has been proposed
in [9] for digital filter design to find the starting point for
discrete minimization of filter coefficients. Since every weight
and offset is scaled down by the same constant value, the
LUT has to be scaled up accordingly: if weights and offsets
are scaled by the common factor A then the domain of the
function to be computed using the LUT has to be scaled by
the factor A~%. :

The second idea is to perform the learning, starting from
the discretized continuous solution obtained by BP, again
applying BP. It is well known that the BP algorithm computes
the gradient of a quadratic error function that is the sum of
the squares of the differences between the actual and desired
outputs for each input/output pair of the training set [4]. The
BP algorithm used in this phase estimates the gradient of
this error function and updates weights and offsets applying a
discretized BP formula. Offset values, which are confinuous,
are freely changed toward the steepest descent direction, while
weights are changed only if the learning move prescribes a
new value that, rounded to the closer value belonging to Wy
or Ws r, differs from the previous one.

Clearly, a good control of the learning rate 7 is crucial
for the good behavior of the algorithm. In such a way, it is
possible to reduce the error function and, hopefully, to reach
convergence. We have seen that best results are obtained if the
starting point is computed by iterating continuous BP learning
up to the highest possible degree of convergence.

B. Formal Description

More formally, given a MLP with a certain number of layers
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and neurons per layer and a set (training set) of P input—output
pairs {i,d,;p = 1,---, P}, the problem is to find the weight
and offset values that minimize the error between desired and
computed outputs for all input—output pairs of the training set.
Usually, the measures of such error are the average quadratic
error Es:

Lid 2
S |dp — 00|
1

Ey=1%
? PNy ®)
and the minmax error Ey:
Ex = max {|dpx - 05 ™|} ©

where dp  is the kth component of d, (the desired output
of the kth neuron of the last layer, referring to the pth
input—output pair), and o,,’k(M ) is the kth component of
0,(M).

In the following we assume that the whole NN is assigned
to L LUT’s and that suffix r refers to weights and offsets of
neurons assigned to rth LUT, r = 1,---, L. We also assume
that the weight values belong to Wy, i.e., they are single
power-to-two. The extension to Ws 1 (sum of two-power-of-
two) is straightforward.

The learning procedure consists in the following step.

1) Make the network learn using the classical BP algorithm
until convergence and until no more significative improvement
can be achieved. Let 99,(*) be the offset of the kth neuron of
the sth layer, and wj, j(s) be the weight related to the link from
the jth neuron of the layer (s — 1) to the kth neuron of the
sth layer of such a converged MLP.

2) Normalize weights: compute the maximum weight, W,
(in absolute value) of each LUT:

w8

W, = max { vk

7,9,k,8

} (10)

where index r refers to the LUT and indexes &k and s refer to
neurons that use the rth LUT. Divide all weights and offsets
by W,:

s w;, ;) : 9, 5,
’ ():—;~ ﬁ”k(s)z__v__

r,kj ) T,
r r

w (11)
In this way, all new weights w;, j(s) will belong to the interval
{-1,1].

3) For each LUT of the digital architecture, define the scalar
function e.(B):

Q[Bw;,kj(s)]
" s ’
e-(B) = Jmax wil ;) - — 5 (12)

where index r again refers to the LUT, indexes k and s refer to
neurons that use the rth LUT, and the operator Q [-] denotes
rounding to the nearest term belonging to Ws. B a further
scale factor; e,(B) is a measure of the match between real
weights and their rounded approximations belonging to Ws.
Following an approach similar to that proposed in [9] for
FIR filters design, e.(B) is minimized with respect to B and

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 4, NO. 1, JANUARY 1993

new weights and offsets are computed for the value B, that
minimizes e,(B):

W) = Q[B,w;{kj“)], 9, = Bl (13)
The cumulative scale factor for rth LUT is thus:
B,
A, ==L, 14
" (14)

rth LUT is then scaled accordingly to yield values correspond-
ing to the nonscaled case.

4) Check the behavior of the neural network having the new
weights and offsets w, ;(*) and ¥, (). If the new network
performs the desired mapping between inputs and outputs with
an error Ey within a given tolerance, the design procedure
ends. If not, the following steps are performed.

5) Starting from the network having weights and offsets
wy ;) and 9, ;), perform a cumulative BP step [10],
adding the contribution of all input—output pairs belonging
to the training set and compute for each neuron the quantities
dk(s) and ij(s):

P
D SUACINPES TR
p=1

P
ij(s) - Z&p!k(S)op,j(s—l) k=1,---,N,
p=1

Jj=1,---,Ns1 (15)

where p refers to the pth input—output pair of the training set,
05,;*~ 1) is the corresponding output of the jth neuron of layer
(s—1), and §, x(*) has the meaning defined in (4), referring to
the pth input—output pair of the training set. It is now possible
to drop the index r, referring to the LUT, as it does not carry
any more information.

6) Change the weights and offsets according to the formu-
lae:

wi; ) - =Q[wkj(s)+7]ij(s)] s=M,.--.1

98 s = 9,0 4 ndk(s) k=1,---,N, (16)

where the right-hand-side term refers to the old value, while
the left one is the new value. If the error Ej is decreased
after application of (16), n is increased by a factor M. On
the contrary, if F» is increased, n is decreased by a factor
D, In this way, 7 is automatically adapted to the problem,
similarly to the approach proposed in [10]. The values of 7
control parameters actually used are:

M, =105 D,=0.T. a7)

This learning rate control strategy (a slight increase of 77 in case
of success and a bigger decrease in case of failure) is fairly
robust, and has been successfully tested by the authors, also in
continuous BP learning. As the learning rate is self-adaptive,
the actual values of M, and D, are not critical, provided that
they do not differ too much from the given ones.

Fig. 3(a) shows a typical learning curve of the method (E>
versus the number of iterations), while Fig. 3(b) shows the
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Fig. 3. (a) E» versus the number of iterations of the discrete learning
algorithm during a typical learning; (b) Typical behavior of 1 value versus
the number of iterations of the learning algorithm.

o
8

typical behavior of n during learning. It can be seen that 7,
starting from its initial value, quickly adapts to the problem,
allowing the number of iterations to be reduced.

7) If no weights have been changed in the latest L
iterations, the single weight having a maximum value of
Awkj(s) is forced to change to the direction of Awkj(s). If
this change causes a percentage increase in E> of more than
P,, the weight is reset to its old value. The values used for
these additional parameters are:

L; =10, P =15%. (18)
These figures proved successful in all test runs performed,
most of which, however, converged without resorting to this
forced change. For other problems it is possible that these pa-
rameters need a “tuning” depending on the particular problem.
After the computation of steps 6 and 7, go to step 4.

If convergence cannot be achieved, two alternatives are still
possible:

a) Locate the most “critical” weights and use for them an
approximation with a higher number of power-of-two terms. A
similar procedure has been presented for FIR filter design [6].
The most critical weights could be defined as those weights
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having the highest values of |Dk]-(s)
(16).

b) Change the network topology, adding layers and/or
neurons to existing layers, trying to find a better starting point
for the discretization procedure.

However, convergence cannot be guaranteed, as in MLP’s
with continuous weights using the BP algorithm. The follow-
ing section shows indeed that convergence has been achieved
in most test cases considered.

, according to (15) and

V. RESULTS

The design procedure has been tested using a pattern recog-
nition problem, consisting in the recognition of character
patterns encoded in a 8 x 8 pixle matrix, according to the
IBM PC CGA character set. 95 different characters had to
be recognized, corresponding to ASCII codes between 32
and 126. The number of input—output pairs, P, is thus 95,
and for each pair the input is a vector of 64 binary values,
corresponding to the pixel matrix representing a character,
while the output is a vector of 8 binary values, representing
its coded ASCII value. Therefore, the used MLP’s have 64
inputs and 8 outputs.

All performed tests deal with binary values, while BP
requires real values. We set all input—output pairs of values
of the training set to 0.1 and 0.9 rather than to zero and one,
respectively, to improve convergence [11].

Let us note that, although the CGA character set has been
designed to maximize the difference between characters, there
are still many characters very similar to each other. For
instance: colon and semicolon; full stop and comma, the
characters 1, I, [, |; and many others. Therefore, this pattern
recognition problem is not straightforward.

A reduced test problem was also used, consisting in the
recognition of the characters representing the ten digits. In
this case, only four network outputs are significant.

In the tests, we considered various MLP’s, with various
topologies, various assignments of LUT’s to neurons, and
different values of S (see (6)).

A. MLP’s Used in the Tests

In the tests we used two MLP’s: the first with 64 inputs, 64
hidden neurons and 8 outputs (64/64/8) and the second with
32 hidden neurons (64/32/8). The assignments of PE’s (and
thus LUT’s) to neurons, as discussed in Section III-B, are of
four kinds: single (S), slice (C), layer (L), and global (G).
In the case (C), we have 8 slices, each including 8 inputs, 8
or 4 hidden neurons and one output neuron. The considered
values of the number of shifts, S, are 8, 4, and 1.

For the reduced problem with 10 input—output pairs, we
used three different MLP topologies (with 64/64/4, 64/8/4
and 64 /4 neurons, respectively), and many different values of
S, from 8 to 0.

B. Continuous Learning

Step 1 of the learning algorithm prescribes to perform a
continuous BP learning, until no further significant improve-
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TABLE 1
REesuLTs oF CoNTINUOUS BP LEARNING ON DIiFFERENT MLP’S AND WITH
TEST PROBLEMS INVOLVING THE RECOGNITION OF 10 AND 95
CHARACTERS OF CGA PC CHARACTER SET. THE LEARNING
Was STopPED WHEN E\- REACHED THE VALUE OF 0.1.

input—
MLP Neurons in Layers output approx. n
name Input  Hidden Output pairs of iterations E;
64/64/8 A 64 64 8 95 10000 0.0299
64/64/8 B 64 64 8 95 10000 0.0361
64/64/8 C 64 64 8 95 10000 0.0311
64/64/8 D 64 64 8 95 10000 0.0324
64/64/8 E 64 64 8 95 10000 0.0315
64/32/8 F 64 32 8 95 11000 0.0391
64/64/8 G 64 32 8 95 11000 0.0235
64/32/8 H 64 32 8 95 11000 0.0292
64/64/8 64 64 4 10 1000 0.0337
64/8/8 64 8 4 10 400 0.0325

ment can be made. In the presented cases, the learning stopped
when Ex was less than 0.1 to limit the learning time.

For the 64/64/8 case, we considered five different networks,
starting from different initial random weights, denoted by
letters A, B, C, D, and E. Similarly, for the 64/32/8 case,
we considered three different networks, denoted by letters F,
G, and H.

Table 1 shows data about this continuous learning, referring
both to 95 and 10 input—output pairs. The errors E, and
Ex —see (8) and (9)—are reported for each case.

It is well known that the optimal number of hidden neurons
of a MLP is difficult to determine. In the 95 characters
problem, we found that the 64/64/8 MLP converges easily,
while in some cases the 64/32/8 MLP has convergence
problems, getting stuck in local minima.

"C. Results with 95 Characters

In this tests, the tolerance e, as defined in point 4) of
Section IV-B, was set to 0.3, meaning that a value less than
0.4 is considered to be zero, and a value greater than 0.6
is considered to be one. Table II summarizes all test runs,
reporting the average number of iterations and their standard
deviation versus S, for all LUT assignments to neurons.
Table III reports the starting value of Ex and the total number
of iterations to converge for all test runs concerning the case
with § = 4.

The results concerning the 64/64/8 MLP are very noisy,
being characterized by a high standard deviation. However,
convergence was always achieved in a number of iterations
ranging from 48 to 472, lowering the absolute error Ex from
an initial value of about 0.8 to less than 0.3. All kinds of
LUT assignments to neurons seem to be equivalent, within
one standard deviation, in the number of iterations, at least
for S greater than one. Moreover, the number of iterations
needed to converge seems lower for S = 4 than for S = 8,
while one could expect the contrary, as the number of degrees
of freedom decreases with S. Therefore, these results confirm
the redundancy of the 64/64/8 MLP for this problem.

On the contrary, the results concerning the 64/32/8 MLP,
limited to three tests for each value of S, show a clear
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TABLE I1
NUMBER OF ITERATIONS TO CONVERGE TO E - = 0.3. (AVERAGE AND
STANDARD DEVIATION) oN FIVE MLP'S 64/64/8 (A..E CASES) AND
THREE MLP’S 64/32/8 (F..H CASES) VARYING LUT ASSIGNMENT
To NEURONS AND NUMBER OF MAXIMUM BIT SHIFTS S.

Value of §
LUT Assignment
to Neurons 8 4 1
64/64/8 avg. s.d. avg. s.d. avg. s.d.
Single (S) 206 115 114 51 426 141
Slice (C) 107 48 305 140 == ==
Layer (L) 142 91 200 106 == _
Global (G) 182 137 179 120 640 213
64/32/8 avg. s.d. avg. s.d. avg. s.d.
Single (S) 180 37 332 110 == ==
Slice (C) 224 43 333 106 == =
Layer (L) 216 52 355 111 == =
Global (G) 194 105 397 142 == ==
TABLE III

STARTING VALUES OF Ey' AFTER STEPS 2) AND 3) OF THE ALGORITHM,
AND NUMBER OF ITERATIONS TO REACH Ey = 0.3
WITH THE DISCRETIZED BP PROCEDURE.

N. of iterations for E\ = 0.3 Starting value of Ey

LUT: s C L G s C L G
64/64/8;5 = 4
A 69 472 198 59 0780 0.806 0.878 0.657
B 206 120 386 48 0793 0.811 0817 0.767
C 82 190 95 160 0.740 0.796 0.797 0.757
D 80 454 223 360 0.532 0718 0.841 0.691
E 132 291 100 268 0.583 0.854 0.837 0.851
64/32/8;5 = 8
F 212 278 290 326 0.873 0883 0933 0912
G 128 221 178 190 0975 0980 0976 0.997
H 201 173 181 68 0.792 0812 0.875 0.956
64/32/8;5 = 4
F 436 450 430 538 0.876 0901 0.931 0.956
G 382 357 437 452 0967 0957 0.949 0.996
H 180 193 198 201 0.802 0.870 0.862 0.961

dependence of the MLP behavior on its degrees of freedom
given by LUT assignment and shift levels. Convergence in the
case with § = 8 is much better than in the case with S = 4,
while with § = 1, the MLP’s always fail to converge.

These results suggest that, as redundance becomes critical,
convergence becomes slower and cannot be reached with
extreme discretization.

These results, however, confirm the validity of the proposed
algorithm and the realizability of NN’s with power-of-two
weights. In the case of extreme weight discretization, of
course, a redundant MLP is needed to achieve convergence.

D. Asymptotic Learning

Beside the ability of the algorithm to reach prescribed value
of Ex, it is also interesting to find the smallest reached
value of Ex. As these tests need a lot of computer time, we
performed most of them using the reduced test cases with
10 input/output pairs. The used MLP’s span from a very
redundant one (64/64/4 MLP) to the least redundant possible
(64/4 MLP). In the tests, we considered also the extreme
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Fig. 4. Minimum values of Ex after asymptotic learning versus N, for the
possible assignments of LUT’s to neurons: single (S), “slice” (C), layer (L)
and global (G); (2) MLP 64/64/4 with 10 input—output pairs in the training
set; (b) MLP 64/8/4 with 10 input—output pairs in the training set; (c) MLP
64/64/8 with 95 input—output pairs in the training set.

discretization with S = 0, meaning that weights values must
belong to the set {—1, 0, 1}.

Fig. 4(a){(c) show the results for the MLP’s 64/64/4,
64/8/4, and 64/4, respectively. Each figure reports the value
of the minimum reached Ex versus S, for the various as-
signments of LUT’s to neurons. It can be seen that, when
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TABLE 1V
MINIMUM VALUES OF Ex AND E3 AFTER ASYMPTOTIC LEARNING FOR
MLP 64/64/8 WitH 95 INPUT-QUTPUT PAIRS IN THE LEARNING SET.

Value of N
LUT Assignment
to neurons Error 8 4
Single (S) Ey 0.207 0.226
Single (S) E» 0.056 0.060
Global (G) E 0.280 0.252
Global (G) E> 0.056 0.067

the redundance of the MLP is high (high number of neurons
and/or high value of S), the minimum value of Ex reached
is approximately the same. As the redundance diminished, the
minimum value of Ex increases and becomes higher as S
and as the number of LUT’s decreases, with the exception of
the “layer” assignment (L), that performs in most cases better
than the “slice” one (C), which has more LUT’s. Presently,
we have no explanation for this fact.

Table IV shows the results of similar test cases, for the
64/64/8 MLP with 95 characters, which confirm this view.

VI. GENERALIZATION CAPABILITY

To perform further tests on the performance of the proposed
algorithm, and to verify the generalization capability of the dis-
cretized MLP, another experiment has been carried out. This
experiment concerns the well known problem of classifying
points inside and outside a circular region in the plane, as
reported in [12].

Formally, the problem consists in the building of a MLP
with 2 inputs and 1 output, which, given the z,y coordinates
of a point in the Cartesian plane, is able to recognize if
this point lies inside or outside a unit-radius circle centered
at the origin. The network output is zero if the point lies
outside, one if it lies inside. In practice, the experiment is
performed choosing a suitable MLP topology, creating a finite-
size learning set composed of randomly selected points inside
and outside the circle, and applying the BP algorithm until
the network converges within a given accuracy. As in [12], a
MLP with one hidden layer of 8 neurons has been used in this
experiment, while the learning set is composed of 200 points,
100 points randomly selected inside the circle, and 100 points
randomly selected outside the circle, but within the square
region bounded by || < 5 and |y| < 5.

To test the generalization capabilities of the resulting net-
work, the MLP has been requested to classify all the points
inside the region described by |z} < 5 and |y| < 5. In practice,
a dense grid of points was used to this purpose. The obtained
set of output values can be used to produce a contour plot,
where each curve corresponds to a given output level. Any
point inside the curve produces an output level which is equal
to, or greater than the given level. A typical plot for the MLP
after convergence is reported in Fig. 5, where the four curves
represent the levels 0.2, 0.4, 0.6, and 0.8 from the outer to the
inner. As can be seen, the contour plots resemble very much
the target unit circle, especially the 0.8 level innermost curve.

The proposed algorithm has been tested on this problem
varying LUT assignment and discretization levels. For each
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Fig. 5. Contour plot for the unit-circle recognition problem after continuous
learning. The curves represent the MLP output levels 0.2, 0.4, 0.6, and 0.8,
from the outer to the inner (an output of 0.1 means “outside” while 0.9 means
“inside”).

LUT assignment and discretization level, many trials were
performed with different initial sets of weights. In all test
runs, a good accordance between the overall degree of freedom
(LUT number and discretization levels) and the generalization
capability of the network has been obtained.

For the sake of brevity, only a few graphical results are
reported. Fig. 6(a) shows the performance of the MLP dis-
cretized using a global LUT (the worst case of LUT assign-
ment) and one power-of-two term with S = 0 (the worst case
of level discretization, the weights being constrained to be —1,
0, or 1). Although the network behavior is worse than that of
the original MLP (see Fig. 5), the discretized network obtained
with the proposed algorithm retains a good generalization ca-
pability as far as the inner levels are concerned. A comparison
of this plot with Fig. 6(b) which reports the performance
of the network after steps 2) and 3) of the algorithm, but
before the additional discretized BP procedure of steps 5) to 7)
clearly highlights the importance of this phase to the overall
performance.

Fig. 7 reports the result of the MLP discretized using a
global LUT and a single power-of-two term with S = 3. The
generalization capability and the effectiveness of the proposed
algorithm are confirmed.

VII. DISCUSSION AND CONCLUSIONS

In this paper, we proposed the use of weights with values
limited to power-of-two for a fast digital implementation of
NN’s, and presented a learning algorithm for MLP’s with
such weights. The proposed discretized MLP and the learn-
ing algorithm performed well in all test cases considered
and demonstrated a good generalization capability. The main
drawback of the algorithm is the need for off-line computation,
since learning requires multiplications.

A discrete power-of-two MLP is, of course, less powerful
than a classical, real-valued MLP of the same size. The higher
the number of admissible power-of-two values, and the more
different LUT’s are available, the more powerful the discrete
MLP will be. These considerations are confirmed by the tests
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Contour plot after discrete learning; (b) contour piot after rounding off the
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Fig. 7. Unit-circle recognition problem solved with a power-of-two MLP
with S = 3 and global LUT. (The curves have the same meaning as Fig. 5).

made: if the real-valued MLP is not redundant at all for
solving a given problem, its power-of-two counterpart will
exhibit a difficult convergence, if not at all. If the real-valued
MLP is redundant, the power-of-two counterpart exhibits a
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clear improvement in its performance, increasing the number
of admissible power-of-two, S, and the number of LUT’s.
Eventually, when the real-valued MLP is very redundant,
the corresponding power-of-two network shows the typical
learning behavior of very redundant MLP’s: the number of
iterations needed to learn is very variable and often worse
than for a less redundant network. In this latter case, discrete
MLP’s exhibit a limiting behavior that does not depend on
S or on the LUT number, being affected by “noise” due to
discretization. On the other hand, a MLP which is redundant
enough can learn a given behavior using only one or a few
LUT’s, even with extreme weight discretization (S = 0).

In the presented tests we concentrated on single power-of-
two weights, although the learning algorithm can deal also
with multiple power-of-two. In fact, we also performed some
tests on the character recognition problem using MLP’s with
weights whose values were the sum of two power-of-two
terms, and S was varied between 7 and 9. Such weight values
are much closer to continuous ones than single power-of-two
weights, and we could expect a discretized MLP behavior
very similar to a real-valued MLP. All test cases computed
confirmed this view, presenting a much better convergence
to the solution, and often showing a satisfactory behavior
immediately after weight normalization and rounding, with no
need to perform further learning iterations.

The idea of using power-of-two weights to avoid multi-
plications in NN’s was exploited also for the Neocognitron
neural model [1]. Owing to Neocognitron characteristics, it
was possible to avoid multiplications also in the learning
phase, thus taking full advantage of this technique.

Reference [13] reports a analysis of the effects of quan-
tization on learning and generalization in NN’s. The test
cases presented there refer to a classification problem, where
the performance of the network is measured in terms of the
percentage of patterns correctly classified. However, the quali-
tative relationship among quantization weight level, number of
hidden units (network redundancy), and network performance
is similar to that previously presented and discussed.

Other approaches to NN’s with discrete weights are reported
in [14], where an analog VLSI model of MLP (feedforward
and recurrent) with discrete weights is presented, together with
a discrete learning algorithm (weight perturbation); and in [15],
where extremely discretized NN’s with binary weights are
proposed, together with a learning procedure (CHIR) based
on choosing internal representations. These approaches are not
easily comparable with our approach, since in essence they are
neural models not based on back propagation. Moreover, the
former is based on an analog VLSI implementation, while our
proposal is aimed at a digital implementation for the reasons
explained in the introduction.

In conclusion, we believe that the power-of-two weight
MLP could be good VLSI implementation alternative for
applications requiring extremely fast data processing, but not
requiring in-line learning or relearning. Although restricted to
feed-forward processing, the area-delay product of such neural
VLSI chips could be improved by two orders of magnitude,
or more, over traditional implementations using multipliers
[1]. Examples of possible fields of application could be the
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same as power-of-two digital filters: DSP of wide-band signals,
nonlinear channel equalization, real-time image processing,
and others.
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