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ABSTRACf

Recently, it has been proposed that the biological
networks change not only the synaptic strengths of
connection but also partially their internal topologies,
according to either the received external stimuli and the pre
existent connection layouts. Following this idea, in the paper
a method is presented to dynamically adapt the topology of a
neural network using only the information of the learning set.
The method, although simply eliminates connections from an
initial fully connected network, presents characteristics which
can resemble some biological behaviour. Several
experimental results obtained with recurrent and multilayered
networks are reported in the paper to demonstrate the
capabilities of the proposed method.

1. Introduction

It is well known that Artificial Neural Networks can solve a
large variety of problems. In order to reach this goal, usually
a formal model of the neuron is chosen and used to build a
network with a given topology. Then this network is trained,
adapting the synaptic weights of every neuron, by using a
suitable learning algorithm.
The network topologies which are extensively used, are
chosen among a set of known fixed models that are
characterized by the presence of dense connection matrices
among all neurons (fully connected network) or among
groups of neurons, as in the well known MultiLayer
Perceptron (MLP) [IJ. These topologies however are
different from those found in biological neural systems,
where the networks are often much less regular. Moreover,
since a particular problem may be optimally solved by a
network with a non-regular connection topology, the task of
transforming an oversized regularly connected network into
such optimal non-regular network is completely committed to
the learning algorithm. Most of known learning algorithms,
however, are not able to produce a reduced topology by
zeroing some synaptic weights, instead they typically
produce different structures spreading nonvanishing weights
all over the network. The efficiency can result poor and
several dimensions of a chosen configuration must be tried to
yield an acceptable solution. In fact, if the network is too
small, the input-output mapping cannot be learned with
satisfactory accuracy. Conversely, if the network is too
large, after a long training phase it will learn the given set
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correctly, but will badly generalize due to learning data
overfitting [2]. Therefore, the goal when training a network
is to find a topology large enough to learn the mapping and
as small as possible to generalize correctly.
Two possible approach to produce networks with correct
lopologies have been proposed:
I) start with a small network and grow additional synapses

and/or neurons until the desired behaviour is reached;
2) start with a large network and prune off synapses and/or

neuronSf\Jntil the desired behaviour is retained.
The first approach, although it could be efficient since most
of the job is performed on networks of small size, can be
difficult to realize and control in order to reach network
topologies which are "optimal" in some senses (see for
example [3]).
The second approach is much more studied and consists of
finding a subset of network synaptic weights that, when set
to zero, lead to the smallest increase of an error measure at
the output. Several methods has been proposed in the last
years in particular for the MLP [4,5,6,7,8]. However they
can be slow, requiring periodic retraining of the network,
and often require a "supervisor", a non-local algorithm which
performs to pruning task. Moreover, some of them can
require a difficult fine-tuning of the pruning coefficients in
order to work correctly.
Therefore it is highly desiderable to find new methods which
are able to dynamically adapt the network topology to the
problem. In this paper, using some observations on the
biological network plasticity, an idea is introduced to develop
a procedure for varying the network topology by simply
pruning off connections in an initial overdimensioned fully
connected network.

2. The Proposed Method

The plasticity of brain, i. e. the capability of changing neural
connections over time, is an extensively studied
phenomenon. In this field the work of Hubel and Wiesel on
measuring changes in the ocular dominance statistics of a
large neuron sample of the visual cortex in mammalians
(particularly cat and monkey) are a fundamental milestone.
They found that monocular deprivation drives most neurons
of the cortex to prefer the open eye, provided that the animal
is still sufficiently young [9]. In particular it is now clear that
the plasticity varies over the course of ontogenetic
development and reaches a sharp maximum during the so
called critical period, during which a strong change of the
brain structure is driven by external environmental stimuli.
Recently [10], it has been proposed that, during the critical
period, the network changes not only the synaptic strengths
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A neural network is considered here in which there are input,
hidden and output neurons and where all possible
connections among these units are allowed, specifically
including recursive connections and self- feedback
connections. The algorithm for training the recursive network
is derived fr()m [11]. The proposed method has been tested
on several simple-awlications, in particular the experimental
results relative to the olnary2x2 bits multiplication problems
are reported here.
The initial fully connected network used in this case was
composed of 5 neurons with a total of 50 parameters. The
PASA's have been further averaged on 10 epoches during
the learning phase. Several trials were carried out using
different initial sets of weights and offsets and various
threshold curves have been tested for pruning off. Good
results, in terms of convergence rate and pruning capability,
have been obtained by using the curve in Fig. 1 which
closely resembles the critical period of the biological neural
networks.

3. Experimental Results on Recurrent Networks

function of the epoches in a way depending on the particula..
problem. The connections with a PASA lower than the
threshold value are pruned off.
It can be noted that this algorithm is local in the sense that
each neuron requires only local quantities to compute the
PASA's. Moreover, the computational cost is low, since:
- the calculation of the synaptic activity per training pattern

requires one multiplication/accumulation operation per
synapsis (the multiplication can be avoided by using the
absolute value instead of the square value in (1»;

- the calculation of the PASA's of each connection relative
to the i-th neuron at the end of one training set requires
(N i-I) sums, one division and one multiplication per
synapsis. The comparison between the PASA's and the
threshold can be easily arranged in order to further reduce
the computational burden.

(2)

(I)a.:.(p) = [w.. Act·(P)]2
'J 1J J

where Wij is the synaptic weight of the connection between

the i-th and j-th neurons, and Act/P) is the activation of the j
th neuron corresponding to the p-th input pattern. This
activity can be averaged on the whole training set

N
~ a··(p)
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of connection but also partially its internal topology. These
changes are driven by either the received external stimuli and
the pre-existent connection lavout .
We have found that this idea can be applied also to simple
artificial neural networks. By using only the external stimuli
(i. e. input and output patterns) and the knowledge of the
synaptic weights it is possible to adapt the network to the
problem, changing concurrently the network synapses and
the connection topology.
A simple procedure to prune off connection from a fully
connected network is presented here. No new connections
are created, although a similar approach could be followed to
derive a procedure to add synapses to the network. In order
to verify if a particular connection is necessary or not to solve
a particular problem, a measure of the importance of the
connection is necessary. According to the biological
behaviour, this measure must be proportional either to the
external stimuli and to pre-existent synaptic strength. A very
simple formula can be derived by defining the following
quantity:
- the synaptic activity of the connection of the i-th neuron

coming from the j-th neuron and relative to the p-th
training pattern:~"

(3)
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Fig. 1 Threshold function Th(p) used in the binary
multiplication experiment

The proposed algorithm is able to eliminate up to 40% of the
number of synapses depending on the initial sets of weights
and offsets and the learning phase converges in the large
majority of the cases.
Two sets of experiments were carried out after the proposed
algorithm had reduced the original network by pruning off
several connections. In the first the obtained topology was
tested by performing a new learning phase on pruned
networks loaded with small random set of weights and
offsets. The performance of these networks were at least as
good as those of the original fully connected network and
often they worked better. On the contrary, in the second set
of experiments several networks were built from the initial
fully connected network by pruning off at random positions
the same number of connections eliminated by the proposed
algorithm. These networks, during the learning phase, gave

Th(p)

(4)

"

where Ni is the total number of inputs to the i-th neuron. A
measure of importance of the synapsis can be obtained by
comparing its averaged activity with respect to the the total
average activity relative to the neuron which the synapsis
belongs to. Therefore the Percentage Average Synaptic
Activity (PASA) can be defined as follows

100 a"
PASA"=~1J Aj

where Np is the number of the input training patterns. Since
each neuron is driven by several different synapses, an
average total synaptic activity relative to the i-th neuron can
be defined

During the learning phase the previous quantities vary until
they reach stable values. The idea, used for changing the
network topology, consists in dynamically eliminating all the
connections which present a PASA lower than a threshold
value varying according to a predefined curve.
In the forward step of the learning phase, in each neuron the
synaptic activity of every connection relative to the current
training pattern, is computed and accumulated. At the end of
the training set all the PASA's can be computed. These
values are compared with a threshold Th(p) which is a
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very poor results, often they did not converge at all, with
respect to the equivalent network obtained by the proposed
algorithm.

4. Experimental Results on Multilayered Networks

The proposed method has been tested also with the well
known Multilayer Perceptron (MLP) model [1]. The results
of several simple experiments are reported here. In all cases,
the PASA's are averaged on 2 learning epoches, although
this was seen to be not critical. The threshold function used
in these experiments is the gaussian function:

_1(~)2
2 cr

Th(p) = v e (5)

where "v","m" and cr are constant values, and the factor 100
has been removed. Moreover, a simple procedure has been
added to the pruning algorithm which allows in a layer to
prune off an entire neuron if it is not connected to any neuron
of the upper layer.
In the first experiment, networks with 2 inputs, 4 hidden
neurons and I output have been used to classify 100 points
equally distributed inside and outside a unit circle on the X-Y
plane. The high output classifies points inside the circle,
while the null output classifies points outside it. 50 networks
with different, randomly selected initial weights have been
generated and used in the experiment. Each network was
trained over 300 epoches using the 100 points as learning
set, Fig. 2 shows the original network (a) and three common
topologies obtained after pruning (b,c,d).
The various simulations have shown that the best results are
obtained when the gaussian threshold function is centred on a
value positioned after few tens of epoches but before the
complete convergence has been reached. The values of "m"

and cr parameters are therefore not critical providing that the
network is not disturbed during the early and late phases of
learning. Typical values in this example range from 10 to 60

for "m" and from 4 to 8 for cr. The "v" value depends also on
the size of the network, i.e. on the number of synapses per
neuron, and it is not particularly critical. Notice that selecting
m and s small allows to greatly reduce the computational
burden since most of the learning is performed on a reduced
network.
In the second experiment, networks with 2 inputs, 8 hidden
neurons and 1 output have been used to classify points inside
a unit circle in the square plane region with corners [-3,-3; 
3,3; 3,3; 3,-3]. A regular grid of 500 points was used as
learning set, while 2000 points, randomly selected inside the
region, were used as test set. Fig. 3 shows the original
network (a) and a network (b) obtained by the algorithm in a

typical case (v=O.I, m=30, cr=4, see Fig. 4). About 62.5%
of connections have been pruned off (15(14) and the network
still continue to converge. Fig. 5 reports the Mean-Square
Error (MSE) at the output, computed over the whole training
set, versus the learning epoch, respectively for the complete
network (a) and for the pruned network (b). Notice that the
pruning period does not disturb the convergence process as
shown by the smoothness of the MSE curve in the (b) case.
Looking at the maximum error plots (Fig. 6), i.e. the
maximum of the output error over the whole learning set
versus the training epoch, we can see how, in this case, the
pruning phase has positive effect during the first period of
learning. After many epoches, however, both MSE and
maximum error of the complete network are often slightly
better than those of the pruned network, due to the larger
number of parameters of the first network with respect to the
second.
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A simple generalization experiment has been also perl'ormeti;
Table I reports the MSE and maximum error values obtained
by the 2 networks after 150 training epoches, using the test
set as input. Although in this case the redundancy of the
complete network is little, the pruned network shows similar
or better perfonnance on the test set with respect to the
complete network, using a number of synapses reduced to
the 37.5% of the original.

Table I MSE and maximum output error obtained by the
networks of Fig. 3 with the training and test set. The number
of wrong classifications is also reported.

training set test set (2000 points)

MSE MaxErr MSE MaxErr failed

Pruned 62.5 % 0.0602 0.4293 0.0662 0.99 174

Pruned 0% 0.0543 0.506 0.0655 0.99 169
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Fig.2 (a) Complete
network;(b,c,d) common
ropologies obtained after
pruning.






