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Abstract-This paper describes the salient features of using a
simulated annealing (SA) algorithm in the context of designing
digital filters with coefficient values expressed as the sum of
power of two. A procedure for linear phase digital filter design,
using this algorithm, is first presented and tested, yielding re­
sults as good as known optimal methods. The algorithm is then
applied to the design of Nyquist filters, optimizing at the same
time both frequency response and intersymbol interference, and
to the design of cascade form FIR filters.

Although SA is not a solution to all design problems, and is
computationally very expensive, it may be an important method
for designing special digital filters where numerous or conflict­
ing constraints are present.

I. INTRODUCTION

THE realization of low-cost and high-speed special
purpose DSP hardware requires fast fixed-point arith­

metic, and consequently filters with very coarse coeffi­
cients' values are highly valuable. Efficient design pro­
cedures for these kinds of filters are therefore very
important.

A variety of algorithms exist for the design of digital
filters. Unfortunately, each of them is suitable for a par­
ticular application. For example, integer programming
methods are used for the design of FIR digital filters with
discrete valued coefficients when the performance crite­
rion is the classical minmax [1]-[3]; i.e., the maximum
weighted difference between the desired frequency re­
sponse and the actual filter frequency response. These
methods require a high computation time, and a large
amount of memory, so that suboptimal techniques have
also been extensively used. Among other techniques we
recall the use of integer programming methods to a mean­
square-error criterion [4].

In this paper we are interested mainly in FIR filters
whose coefficients can be written as a power of two, or as
a sum (or difference) of two power of two. It has been
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shown that while both of the above mentioned integer pro­
gramming techniques can still be applied [3]-[5], some of
the approximation techniques, which determine the dis­
crete solution by rounding of the infinite precision solu­
tion, can no longer be used because they yield very poor
performance [5]. For higher order filters, we should men­
tion the suboptimal design method of Zhao and Tadokoro
[6] which first determines the filter gain, and then per­
forms a local optimization of the filter coefficients in order
to reduce the maximum weighted frequency error.

The basic limitation of all the above methods is that
they can mainly be used to design FIR digital filters with
specifications in the frequency domain, or whenever the
constraints on the coefficients are of linear type. On the
other hand, to design Nyquist filters [7], [8] or cascade
form FIR filters [9], we may have a mixture of require­
ments and some of those may not be linear in the coeffi­
cients.

This paper describes another method based upon the
global optimization algorithm, known as simulated an­
nealing (SA) [10]. The algorithm has been directly de­
rived from the SA algorithm for functions of continuous
variables presented in [11]. This could be accomplished
because the range of variation of the coefficients, al­
though discrete, is sufficiently broad. The original algo­
rithm has been modified in such a way that the indepen­
dent variables are forced to be discrete (sum of two power­
of-two). Other approaches of using SA to digital filter de­
sign could also be applied [12]-[15]. However, the pro­
posed method is more general because it can be used to
simultaneously optimize functions of both continuous and
discrete variables. Furthermore, new features have been
added with respect to traditional SA algorithms with the
goal of reducing the computational complexity.

A detailed description of the algorithm is reported in
Section II. To test the optimization procedure, the pro­
posed algorithm was implemented in C language on a
SUN 3/60 workstation for the same filter designs pre­
sented in [5, fig. 4], and a comparable performance, up
to 0.5 dB, was obtained (see Section III). The drawback
of using SA is that the computation time is quite long;
in the order of 1-2 hours for each filter design, on the Sun
3/60. However, this was more than compensated by the
extreme versatility of the new algorithm, which can be
used to design filters with multiple constraints. Two ex­
amples of applications will be reported: 1) design of
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and in this case M = (N + 3)/2. In general, IG is an
interval belonging to R+.

B. SA Algorithm

SA is a well-known powerful global optimization al­
gorithm, introduced in combinatorial optimizations [10].
It is based on random moves, and has the ability to over­
come local minima, found on the way toward a better
minimum, with uphill moves.

The SA algorithm actually used is derived from the SA
algorithm for functions of continuous variables proposed
in [11]; a proper discretization of the variables' values
and various controls of the computational effort, during
the search, have been added.

/) Generalities: Let x be a vector of M components in
C andf(x) the function to minimize:

The algorithm proceeds iteratively: from the starting point
Xo it generates a sequence of points {xd that tend towards
the minimum. The latest point added to the sequence is
called the current point xc. Some symbols are now intro­
duced:

r a random number unifonnly distributed in the
range [ - 1, 1],

s the step vector. Its components {sp}, p = 1, 2,
... ,M, control the trial point generation (see
Section II-B3),

xc,p the pth component of the vector XC'

Fig. I shows a Pascal-like diagram of the main steps of
the minimization algorithm. It is composed of an initial­
ization phase, a main loop (from which it is possible to
escape if a tennination test has been satisfied), and four
nested loops. In the following, we shall describe the al­
gorithm from the inner to the outer loop.

2) Algorithm Parameters: The algorithm has many
parameters controling its behavior and their proper setting
is crucial to obtain good perfonnance. A partial list is now
given:

To the starting temperature,
Tmin the minimum temperature,
rT the temperature reduction factor,
E the tenninating criterion,
N, the number of temperature reductions to test for

tennination,
N, the number of cycles between step adjustments,
Nmin the minimum number of step adjustments be­

tween temperature reductions,
Nmax the maximum number of step adjustments be­

tween temperature reductions,
Nr the number of temperature reductions between

restarts from the optimum value reached so
far.

Nyquist filters, and 2) cascade fonn FIR filters (two
stages). In this second case, the algorithm is able to per­
fonn an optimization of the two stages at the same time.
Indeed, it is seen that this approach yields a better per­
fonnance than a procedure which designs one stage at a
time iteratively [9].

II. AN ALGORITHM FOR DESIGNING DIGITAL FILTERS

In this section we present a general algorithm which
uses the SA method for the design of FIR digital filters.

A. Variable Space

In general tenns, the problem of designing a digital fil­
ter consists of finding the minimum of a real function f (x)
whose variables {xJ may assume only discrete values [5].
For a minmax criterion, the function represents the max­
imum weighted difference between the desired and the ac­
tual frequency response. Variables are the coefficients
{h(n)} of the filter, which in our case can be written as a
power of two, or sum of two power of two tenns. In the
latter case, the domain of Xi is given by

D = I'a: a = ±CkTgk,L k=1

Ck E { -1, 0, I} and gk E {I, 2, ... ,B}J
(1)

which is ordered as follows:

D = {at> a2, ... ,ad, with

(2)

In (1), B is an integer representing the maximum number
of shifts that can be perfonned on the filter input signal.
It is seen that values of Xi are within the interval [ - 1, 1]
and they are not distributed unifonnly. However, if B is
sufficiently large, the values of Xi are numerous enough
that we may consider the domain of Xi "almost continu­
ous." For this reason, a modified version of the SA al­
gorithm for continuous variables [11] has been used. As
well, a similar approach has been used by the authors to
design FIR filters with finite word length coefficients [14].
The difference is that now the filter coefficient values are
very coarse and, as a consequence, the filter gain G as­
sumes a particular relevance. Indeed, perfonnance may
deteriorate up to 6 dB if the choice of G is not accurate
[6]. The filter design then becomes a mixed optimization
problem, namely, continuous in the filter gain, and dis­
crete in the coefficient values. The SA algorithm has been
adapted to solve this type of problem, thus avoiding the
use of an exhaustive search over a fine grid of G's.

To summarize, on designing linear phase FIR filters of
length N, the variables are the gain G, with domain Ie,
and (N + 1) /2 coefficients, each with domain D as de­
fined by (1). This holds true if N is odd. For other cases
we refer to [16]. If x denotes the vector of independent
variables with M components, its domain C is simply the

Cartesian product of I G with D(N + 1)/2, i.e.,

C = I
G

X D(N+ 1)/2

f(x): C --. R.

(3)

(4)
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Fig. I. The proposed simulated annealing optimization algorithm.

end;
1: return

end.

(9)

(8)

(10)

is called a move. A series of moves along all M coordinate
directions is called a cycle.

A trial point x becomes the new current point if the
metropolis test is satisfied [10], [11]. Namely, if

f(x) > f(xJ

x is accepted with probability p where

Tk is a control parameter called temperature. If Tk > 0, it
is possible that a trial point x is accepted even if it has a
higher value off than the current point.

The method starts with a "high" temperature To, for
which most trial points are accepted, and then gradually
reduces Tk in order to focus on the minimum. If the values
of Tk are very high, most trial points are accepted, and
the algorithm performs a random walk of the domain C.
At lower (but still high enough) values of Tk only the gross
behavior of the cost function is relevant to the search.
Eventually, as Tk is further decreased, finer details can be
developed to obtain a good final point.

The best point reached by the search (i.e., the point
with the lowest function value so far found) is recorded
as x opt '

4) Initialization: The initialization phase consists of
choosing the following parameters: Xo: the starting point;
so: the starting step vector.

Selection of the starting point depends on the problem.
In general, for problems with a low value of M, the SA
algorithm is robust enough to yield good results even with
random starting points [14], [15]. However, when M is
high the choice of a "good" starting point is very impor­
tant for good performance of the algorithm. As a starting
point for filter design, we adopted the quantized version
(see (1)) of a good infinite precision solution.

Based upon (5) and (6) we have the correspondence: if
x p is a continuous variable, sp should also be continuous;
while if xp is discrete, the corresponding sp should be a
positive integer number. In all presented tests the starting
values are respectively equal to one quarter of the length
of I G in the continuous case, and to 2 in the discrete case.
However, this choice is not very important, since s is
quickly adapted to the problem by the step adjustment al­
gorithm, illustrated in the next paragraph.

5) Step Adjustments: Step vector s is periodically ad­
justed every Ns cycles to follow the function behavior
without wasting function evaluations with search steps too
big (in such case most of the trial points are rejected) or
too small (the sequence tends too slowly toward the min­
imum). The criterion used to adjust the steps is to main­
tain a 1 : 1 ratio between accepted and rejected candidate
points along each coordinate direction.

For continuous variables, the formula used for step ad-

p:= exp (J(XJ ~ f(X)).

x is always accepted. However, if

(7)

(5)

With this method, trial coordinate values are distrib­
uted in intervals of size proportional to sp and centred
around xc,p' The generation of an admissible trial point x

begin
INI7IALIZE PARAHE7ERS;
while true do
begin

j : =1;
while j<=Nr do

begin
k:=1;
while k<=Nk do

begin
m:=1;
while m<=Ns do

begin
p:=1;
while p<=M do
begin

SEARCH HOVE;
if HE7ROPOLIS 7ES7 PASSED then
begin

ACCEP7 NEW POIN7;

COMPARE WI7H '"'opt;
end;
p:=p+1;

end;
m:=m+1;

end;
S7EP ADJUS7HEN7;
k:=k+1;

end;

COMPU7E <f>, <f2 >, A, Nk ;

if 7ERHINA7ION 7ES7 PASSED then goto 1;
T:=rT*T;

if T<=Tmin then goto 1;

j:=j+1;
end;
RES7AR7 FROH '"'opt;

If xp lies outside I G , then (5) is applied again until xp E

IG·

A move for a discrete variable: (p > 1 for C given by
(3)).

Let xc,p = Olkp ' Selection of index value k; associated to

each element of Din (2), Olk'p' as follows:

k; : = kp + Lrsp + 0.5J . (6)

If k; < 1 or k; > Lor k; = kp , then (6) is applied again
until 1 :5 k; :5 Land k; =I=- kp • In this case:

The meanings and suitable values of these parameters
will be given after a general description of the algorithm.

3) Search Cycle: In the inner loop, the algorithm per­
forms the basic search of the function to minimize. New
candidate points x are generated at random along each co­
ordinate direction p (p = 1, ... , M, in sequence), ac­
cording to the following formulas:

A move for a continuous variable: (p = I for C given
by (3))
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The other termination criterion stops the search when
the temperature falls below a given minimum value Tmin .

7) Temperature Reductions: In the proposed algo­
rithm, the number of cycles between step adjustments N,
is constant, while the number of step adjustments Nk at a
fixed temperature Tb is dynamically varied according to
a criterion similar to White's [17]. During the search at
temperature Tk - J, the average value off(x) andf2(x), for
the accepted points only, are evaluated. Let A be defined
as

0.5

0.0 g
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lowest possible. When the annealing takes place, the (f >
curve decreases while A rises, allowing many more func­
tion evaluations to be performed. Eventually, the anneal­
ing curve reaches its final plateau closer to the value of
the global minimum found. Correspondingly, A de­
creases, and this avoids wasting function evaluations as
the minimum has been found.

Parameter Nk is crucial for good sampling of the func­
tion f( . ), without wasting computation effort. By keep­
ing Nk a variable, it allows us to save more than 50% of
function evaluations. Furthermore, this improves reliabil­
ity with respect to the algorithm [11].

8) Restart From the Optimum: In the algorithm [11],
after each temperature reduction, the current point Xc was
set equal to xopt ' This choice was justified by the fact that
the functions considered were continuous, with many lo­
cal minima, and defined over possible unbounded do­
mains. This approach led to better results with respect to
the original SA algorithm [10], where the sequence {xd
was never alterated. The algorithm presented here gen­
eralizes the former choice, and restarts from the optimal
point after consecutive N r temperature reductions.

9) Parameters Values: In this section, we will report
the typical values assigned to the various parameters, and
we will briefly justify the choices.

To, the starting temperature. From Section II-B7 To must
be "high enough" to allow a sampling of the search space
before the annealing takes place. In practice, a good value
of To is one which yields a behavior of (f > and A as
shown in Fig. 2.

In [17], it has been proposed to choose To proportional
to the standard deviation of the cost function. From our
experience, we believe that a better choice of To is based
on the direct observation of the behavior of (f > and A.
In the tests performed, To was chosen between 2 and 0.1.

Tmin , the minimum temperature. When a new minimi­
zation problem is tackled, it is better to set Tmin to zero.
As experience is gained on the problem, we should find
at which temperature the optimum is "frozen," then this
is the appropriate value of Tmin . This choice avoids wast­
ing computation time at lower temperatures. In our cases,
Tmin was chosen between 2 x 10-4 and 10-5

, depending
on the filter design.

-2 -1
Log (T)

Fig. 2. Average of cost function (f) and parameter A versus temperature.

(13)

(12)

(11)

u = 1, ... ,N,

Nmin , if A :5 Al

(A - AIHNmax - Nmin)
+ ,

A2 - AI

if A j < A < A2

lik - fk-ul :5 E,

Nk is computed as follows:

and

The behavior of Nk(A) is the simplest possible: Nk in­
creases linearly with A if AI :5 A :5 A 2 , otherwise a min­
imum or maximum value is assumed. Incidentally, if the
distribution of f ( . ) is Gaussian with standard deviation
a then A is an estimate of the ratio a / Tk _ 1 [17]. The ini­
tial value of Nb No, is set equal to Nmin .

Fig. 2 shows a typical annealing curve of (f > (solid
line) and the corresponding behavior of A (dashed line)
versus the temperature T, on designing a FIR filter with a
minmax criterion. For higher values of T, the annealing
curve exhibits the characteristic plateau that denotes the
random sampling of f ( . ). Values of A are lower than 1,
and from (13) the number of function evaluations is the

justments is the same as reported in [11], with the further
constraint being that component sp should not be greater
than one quarter of the length of interval I G • The same
formula is used in the discrete case, with its value rounded
to the nearest integer. Now sp must lie between 2 and L /4.
Limit values are assumed, both in the continuous and dis­
crete case, when the formula yields a value outside
bounds. These constraints guarantee that a new trial com­
ponent xp both differs from the current point component
x c.P and probably lies inside its domain.

6) Termination Test: The proposed algorithm has two
termination criteria to decide when the global minimum
has been reached. The first one depends on parameters E

and N, [11]. Specifically, the function value jj is recorded
in the current point immediately before each temperature
reduction from ~ to ~ + I' When all search cycles at tem­
perature Tk are made, the search is stopped if
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rT, the temperature reduction factor. This parameter,
together with N s , N min , and N max ' determines the number
N eval of function evaluations performed in a single opti­
mization run, in the following way:

On the other hand, if Nr is too high, the information on
the best point reached may be far away from the current
point, and again, the probability to end the search in a
local minimum is very high. We tried many values of Nr

and found that in our case a good choice was 5. However,
selection of this parameter is problem dependent.

(16)

and G are, respectively, the impulse response and gain of
a linear phase FIR filter of length N (odd), the correspond­
ing vector x of independent variables is defined as fol­
lows:

A. Design of FIR Digital Filters

As mentioned in the introduction, when filter coeffi­
cient space is very coarse, determination of the optimum
value of the filter gain G is very important [6].

If

(15)

G E [0.5, 1]

N+3

2
p = 2, ...Xp = h(p - 2),

As indicated by (3), the domain of x is continuous with
respect to Xl and discrete with respect to xp ' p ;::: 2.

To appreciate the similarities and differences with re­
spect to our design strategy, Zhao and Tadokoro's method
[6] is briefly reported. First, they determine the value of
gain G by minimization of

(N - 1)/2 1
E(G) = 2..; {ho(n) - - Q[Gho(n)]}2,

"=0 G

III. DESIGN ALGORITHM

To show the effectiveness and versatility of the pro­
posed algorithm, three types of filter design are presented.
All filters have power-of-two or sum of power-of-two
coefficients. First, classical linear phase FIR filters, with
specifications given by a mask in the frequency domain,
will be designed. This case shows that the SA algorithm's
performance compares favorably with other optimal
methods [5], [9]. Second, in Section IV, we consider the
design of FIR Nyquist filters, whose requirements are to
have maximum stopband attenuation and minimum inter­
symbol interference [7], [8]. In the same section, we also
consider the design of cascade form FIR filters composed
of two stages [9].

where {ho(n)} are the filter coefficients calculated by the
Remez exchange algorithm [16], and Q[a] denotes the (Xi

in (2) closest to a. Once G has been determined by (16),
a simple procedure is used to determine the filter coeffi­
cients (with a sum of power-of-two constraint) which
minimize the maximum weighted frequency ripple. Since
G is strictly related to the filter coefficients values, it is

In tum, <N k ) depends on N min and N max . We can say that
N eval approximately determines the computation time of
the design procedure. In the SA literature, rT has been
given values between 0.5 and 0.99, sometimes with an
adaptive schedule. In our algorithm, rT is constant, with
a value between 0.85 and 0.95, while Nk varies adap­
tively. For values of rT closer to 1, we must scale down
N" N min , and N max to avoid Neva! from becoming too large.

Ns , the number of cycles between two step adjustments.
This parameter controls how often there is a step adjust­
ment. Therefore, if Ns is very low, step adjustments are
performed very often and create convergence problems.
On the other hand, if Ns is very high, there is a poor ad­
aptation to the function behavior. From extensive tests on
continuous functions, values between 10 and 20 were
found to be good choices [11], and these were also the
values used in the presented algorithm.

E, N" the parameters that control the termination test.
N, has been kept equal to 4, a value found in exhaustive
tests in continuous optimization [11]. E is a classical "ter­
mination test" of optimization algorithms, and its value
depends on the particular problem. In our opinion, a good
practice is to set E to a very low value (say: 10-6_10- 9

),

and observe at which temperature there is no further im­
provement: this will be the appropriate value of Tmin.

N min , Nmax> the minimum and maximum number of step
adjustments between two temperature reductions. We can
say that N max (Nmin) controls the number of function eval­
uations at temperatures where annealing (no annealing)
takes place. In order to reduce the computation complex­
ity both N min and N max should be as low as possible. How­
ever, at the same time we should avoid minimization get­
ting trapped into a local minimum. After many tests, we
set their values to N min = 10-20, and N max = 150-300,
depending on the design problem. However, the value of
these parameters is very problem dependent, and its final
setting should be left to the user's experience in the par­
ticular problem.

A), A2, the limit values for the computation of Nk . In
our algorithm, AI = 1 and A 2 = 6. These values are the
results of many observations of diagrams like that re­
ported in Fig. 2, where A is seldom higher than 6 and the
annealing starts taking place when A is approximately
equal to 1.

Nn the number of temperature reductions between two
restarts from x opt ' This parameter is very critical. If Nr is
set to 1, as in the continuous optimization [11], we ob­
serve that the search too often restarts from the same point,
not allowing a proper exploration of the function domain.
In this case, it is likely to be trapped in a local minimum.
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seen that this two step procedure yields a suboptimal value
ofG.

In our experience we obtained better results by replac­
ing E(G) with

M(G) = maxn Iho(n) - ~ Q[Gho(n)]I, G E [0.5, 1].

(17)

We then determine values of G corresponding to some
minimum values of M(G). Small intervals centered around
these values are used as domain IG in the global optimi­
zation algorithm of Section II. Although the SA algorithm
could theoretically solve the general problem with IG equal
to the entire interval [0.5, 1], in practice, in this case only
a local minimum was usually found.

This fact deserves a comment. G is not a variable like
the filter coefficients {h(n)}. Varying G means to change
drastically f ( . ) and this affects all coefficients {h(n)}. In
particular, the global minimum of f ( . ) varies, both as a
point (the values of {h(n)}) and in the value. Therefore,
letting G vary in the whole interval of [0.5, 1] yields very
high perturbations of f ( . ) and our SA algorithm, which
is necessarily limited in the total number of function eval­
uations, tends to get trapped in some local minimum. This
problem could be solved only with an enormous increase
in the computation cost.

Fig. 3 illustrates a typical behavior of E(G) and M(G)
for a particular filter design. Note that although the two
curves exhibit the same behavior, their local minima do
not coincide. In the figure this is especially true for higher
values of G.

The step-by-step design procedure is the following:

1) For a given order N, determine the infinite precision
coefficients {ho(n)} , n = 0, ... ,(N - 1)/2, by the
Remez exchange algorithm [16].

2) By varying the filter gain G from 0.5 to 1 with steps
of 0.001, determine corresponding M(G). Store the value
of GI (for which M( G) is minimum) and the Z other best
local minima Gmwhich have M(Gm) < 5 M(GI ), (1 < m
:5 Z + 1).

3) For each Gm determined in step 2, run the SA al­
gorithm by letting G vary in the interval [Gm - 0.15, Gm

+ 0.15]. Starting point for Gis Gm and for the discrete
variables is {Q[Gmho(n)]}, n = 0, ... , (N - 1)/2. At
each run, store the optimum value of f (x), and the cor­
responding values of x (which includes G and the discrete
variables {h(n)}). The global optimum is determined in
correspondence with the minimum value off (x) over the
various runs.

4) If the best filter does not satisfy the specifications,
the whole procedure must be repeated with a higher value
of N.

The cost function f ( . ) used in the minimization is the
maximum weighted ripple in a finite number Nt of nor­
malized frequencies (sampling frequency equal to 1) at
the limits, and inside the stopband and the passband re-

1.4

30

§
w 0.6

0.4
10

0.2

G

Fig, 3, Quantization error: mean square E(G) in dashed line and maxi­
mum value M(G) in solid line versus gain G,

gions. More formally, let {<t>d, k = 1, . . . ,Nt, be the
sequence of such frequencies, T(<t» the desired value of
the frequency response, and W(<t» a weighting function,
the formula yielding f (x) is

f(x) = max {IW(<t>k)[G- 1H(<t>k) - T(<t>k)]\} (18)
k=I.' ".Nt

where H( <t» is the frequency response of the FIR filter and
G = Xl' For a linear phase filter with order N (odd)

(N-l)/2

H(<t» = h(O) + 2..: h(n) cos (27r<t>n)
n=I

(N-l)/2

= X2 + 2..: Xn +2 cos (27r<t>n) (19)
n=1

by using (15).
The value of Nt must be kept to a minimum, since it

linearly influences the total computation cost of the al­
gorithm, but it must be high enough to yield significant
results. In our computations, generally Nt = 3M, how­
ever, the final reported results of f ( . ) are for a grid of
512 points.

It is worth noting that at each move of the proposed SA
algorithm, only one filter coefficient h(ni) is changed.
Consequently, the computation of the ~ost function in
candidate points is made incrementally by changing in
(19) only the term with h(nJ and thus saying a lot of com­
putations.

B. Examples

For comparison purposes the above algorithm was im­
plemented in C language on a SUN 3/60 workstation with
the same filter designs of [5] and [9]. In all the following
examples, the value of B in (1) is equal to 9, while the
number of starting values of G in step 2 of global proce­
dure is equal to 4.

The filter specifications are a low-pass filter with nor­
malized passband and stopband edges of 0.15 and 0.25,
respectively, and the weighting function equal to one. Let
abe the peak weighted ripple as determined by (18) and
b the mean value of the passband gain [5], we report as
performance criterion the normalized peak weighted rip­
ple a/b.
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TABLE I
RESULTS OF 5 FILTER DESIGNS. NORMALIZED CUTOFF FREQUENCIES ARE

0.15 AND 0.25

TABLE II
FILTER DESIGN WITH N = 31 STARTING FROM 4 DIFFERENT GAIN VALUES

(Starting Point) (Optimum Point)

Filter
Length bib [dB] bib [dB] NT. Function Eval.
N Go (in xo) GoPt (in xop,) x 10- 3

27 0.925 -33.5 0.928 -41.3 849
29 0.924 -33.5 0.926 -43.1 939
31 0.924 -33.5 0.926 -43.1 1060
33 0.924 -35.7 0.927 -44.7 1026
35 0.925 -33.5 0.927 -44.7 1105

M(Go) bib [dB] bib [dB]
Go x 103 (in xo) Gopt (in xort )

0.620 2.65 -36.3 0.624 -42.6
0.788 3.75 -34.7 0.794 -40.9
0.924 5.83 -33.5 0.926 -43.1
0.714 6.28 -31.1 0.699 -38.0

TABLE III
RESULTS OF 6 FILTER DESIGNS. NORMALIZED CUTOFF FREQUENCIES ARE

0.15 AND 0.22

IV. DESIGN OF SPECIAL FILTERS

A. Linear Phase Nyquist Filters

These filters can be used in modem design [7] because
they minimize intersymbol interference (lSI). If {h(n)} is
the impulse response (assume it is even with respect to
the central coefficient h(O», a requirement of such filters
is to have minimum peak lSI, defined as [8]

(Starting Point) (Optimum Point)

Filter
Length bib [dB] bib [dB] NT. Function Eva!.
N Go (in xo) Gopt (in xopt ) X 10- 3

31 0.844 -34.0 0.844 -39.7 795
33 0.844 -35.5 0.844 -39.7 868
35 0.844 -35.8 0.835 -41.0 946
37 0.845 -37.4 0.835 -41.5 995
39 0.844 -36.5 0.841 -41.6 1043
41 0.844 -38.9 0.840 -42.7 1168

(21)

(20)i= I

(N -1)/2K

2 ~ Ih(Ki) I

Ih(O)1
lSI =

where K is the data symbol duration in number of sam­
ples. Moreover, in order to minimize interchannel inter­
ference, the frequency response of these filters must have
maximum attenuation in the stopband. We considered here
only linear phase FIR filters.

The cost function which will be used in the minimiza­
tion is the following:

o
F(h) = -I-I + w lSI

h(O)

other parameters are the same as for previous filters.
Again, it is seen that the SA algorithm can achieve per­
formance equal to other optimal methods [5], [6].

At this point one may wonder why we should use an­
other design method, which requires quite a long com­
putation time, when other well-established algorithms al­
ready exist? The answer may be that the SA algorithm is
a general-purpose method, and finds its main application
especially in the design of filters with special require­
ments; cases where other methods cannot be used. Two
examples will be presented in the next section.

In Table I results of five filter designs are reported. For
a given order N, among the various initial values of G,
we only report that value (Go) which yielded the final best
performance. To show the improvement of using the op­
timization procedure with respect to rounding, we also
report the initial normalized ripple as determined in step
3 of the general procedure. Gopt is the value of G in cor­
respondence with the best 0/b found by using the SA al­
gorithm. The computational cost, reported in the last col­
umn, is expressed by the total number of function
evaluations.

Let us note that these results are almost identical (up to
0.5 dB) to those presented in [5] and [6], where an opti­
mal integer programming algorithm has been used. In any
case, they are better than the results obtained by using the
Zhao and Tadokoro's suboptimal procedure [6].

The drawback of using SA is the computation time: it
took one hour to compute a single run (see step 3) with N
= 27, and the computation time increases as longer filters
are considered. Furthermore, since SA is an optimization
method that does not guarantee finding the global opti­
mum, one cannot rely on a single run. The test cases re­
ported in Table I were each run four times, starting with
different seeds of the random number generator. How­
ever, only in the filter design with N = 35, was the global
optimum not found in the first run. Again, more confi­
dence in the results could be gained by increasing the val­
ues of the parameters introduced in Section II, with a con­
sequent higher computation cost.

To emphasize the importance of the choice of G in the
final performance, let us consider the filter design with N
= 31 more thoroughly. Plots of E(G) and M(G), as de­
fined by (16) and (17), respectively, are shown in Fig. 3.
The global minimum of M(G) in the range [0.5, 1] occurs
at the values G1 = 0.620, while the other three deepest
local minima are located at G2 = 0.788, G3 = 0.924, and
G4 = 0.714. The results of running the SA algorithm,
initiating from the four starting values of G, are reported
in Table II. It is evident that the global minimum of f(x)

was obtained by starting neither from the global minimum
of M(G) nor from the second best minimum.

In Table III we report additional examples of low-pass
filter designs, varying N from 31 to 41, and with the band
edge frequencies equal to 0.15 and 0.22, respectively. All
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lSI = 0.057:

7.50000000e - 01
4.68750000e - 01

-3.90625000e - 03
-IA0625000e - 01

1.95312500e - 03
6A4531250e - 02

-3.90625000e - 03
-3.22265625e - 02
-9.76562500e - 04

2.92968750e - 03
-1.46484375e - 02
-8.78906250e - 03

9.76562500e - 04
-8.78906250e - 03
-1.66015625e - 02
-8.78906250e - 03

O.OOOOOOOOe + 00
9.76562500e - 04
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lSI = 0:

7.5000000e - 01
4.6875000e - 01
O.OOOOOOOe + 00
1.3281250e - 01
O.OOOOOOOe + 00
5 A687500e - 02
O.OOOOOOOe + 00

-1.9531250e - 02
O.OOOOOOOe + 00
2.9296875e - 03
O.OOOOOOOe + 00
5.8593750e - 03
O.OOOOOOOe + 00

-7.8125000e - 03
O.OOOOOOOe + 00
4.8828125e - 03
O.OOOOOOOe + 00

-2.9296875e - 03

TABLE V
IMPULSE RESPONSE, [h(n)], n = 0, I, ... , (N
- I) /2, OF OPTIMIZED NYQUIST FILTERS (N =

35) WHOSE FREQUENCY RESPONSES ARE REPORTED
IN FIG. 4

(c)

Fig. 4. Frequency responses of Nyquist filters of length 35 and power-of­
two coefficients obtained by (a) rounding a truncated raised-cosine func­
tion, (b) using the SA method with lSI = 0, and (c) using the SA method
with w = 0.05.

where b is the stopband ripple and lSI is weighted by pa­
rameter w. With respect to the algorithm of Section II,
this optimization involves only the filter coefficients
{hen)}, whose values must be discrete (sum of two power­
of-two), discarding the optimization with respect to the
continuous gain G. To summarize, the filter requirements
are linear phase, filter coefficients of the form sum of
power of two, and tradeoff between stopband ripple and
peak lSI. The starting point of the minimization was the
rounded truncated infinite precision impulse response
given by a raised-cosine filter [9].

In Table IV we report results concerning three cases of
filter designs, each of different length, and the following
parameters: oversampling factor K equal to 2, and a frac­
tional excess bandwidth (i.e., rolloff factor) of 0.25. As
a consequence, the normalized stopband edge is 0.3125.
The choice of K was dictated by requiring a minimum
filter length N. For each case we consider 1) the truncated
infinite precision raised-cosine filter, 2) the same filter
with coefficients rounded to a difference or sum of power
of two (the starting point of the optimization), 3) the op­
timized sum of two power-of-two coefficients FIR filter
with lSI = 0, and 4) the optimized sum of power-of-two
coefficients FIR filter with w = 0.05 (i.e., lSI =1= 0). The
latter two filters are designed with the proposed SA al­
gorithm. For filters of length 35, Fig. 4 shows the corre­
sponding frequency responses, while Table V reports the
coefficients' values of the optimum filters with N = 35.

It may be interesting to consider the tradeoff between
the weighted stopband ripple b/ Ih(O) I and lSI, which is
reported in Fig. 5 for a given filter length N = 31. These
points have been obtained by optimizing functional (21)
for seven values of wand performing five runs for each
w. For a given lSI, only the lowest value of b/ Ih(O) I has
been reported. It is seen that by allowing lSI to increase
up to 5 % ,the stopband ripple can be lowered to more
than 12 dB.

Filter Length

Filter Type 27 31 35

Truncated raised-
cosine filter -38.5(0) -40.7 (0) -45.3 (0)

Rounded to power-
of-two coeff. -36.0 (0) -39.5 (0) -36.0 (0)

Optimized with
lSI = 0 -41.9 (0) -42.3 (0) -42.8 (0)

Optimized with
w = 0.05 - 50A (0.027) -53.2 (0.038) -57.3 (0.057)

TABLE IV
STOPBAND RIPPLE 0/h(O) (IN DECIBELS) AND lSI (WITHIN PARENTHESIS) FOR

NYQUIST FILTERS WITH SUM OF Two POWER-OF-Two COEFFICIENTS

B. Cascade Form FIR Filters

We conclude this section with the design of cascade
form FIR filters whose performance is far superior to di­
rect form filters [5,J, [9]. The previous design strategy for
these structures was to design one stage at a time itera-

tively. In our case, by using the SA algorithm, we are able
to design all stages at the same time. The result is im­
proved filter performance. In particular we compared re­
sults of our global filter design method with [9, fig. 6].
We should remark that in this example each coefficient is
simply a power of two.
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-42

TABLE VI
PERFORMANCE COMPARISON BETWEEN Two METHODS ON DESIGNING A

DIRECT FORM FILTER WITH POWER-OF-Two COEFFICIENTS

TABLE VII
PERFORMANCE COMPARISON BETWEEN Two METHODS ON DESIGNING A

CASCADE FILTER WITH POWER-OF-Two COEFFICIENTS

3
lSI (%)

Fig. 5. The tradeoff between I> I Ih(O)1 and lSI for a Nyquist filter of length
N = 31.

V. CONCLUSIONS

A simulated annealing algorithm for the design of dig­
ital filters with multiple constraints has been presented.
This algorithm yields good results in applications where
previous approaches use heuristics to find a solution.
Three examples of filter designs have been given to illus­
trate possible applications. The drawback of the proposed
algorithm is its high computation time, especially for
higher order filters. Furthermore, many runs of the same
filter design have to be made in order to "trust" the so­
lution found.

In fact, this method does not guarantee finding the
global optimum, as do all general purpose nonlinear global
optimization algorithms. In our experience, the SA algo­
rithm yielded the same solution (optimal?) in most runs
of the same filter design. However, if the number of filter
coefficients N is higher than 39, it started providing many
local-optimal solutions. Therefore, many more runs were
needed to find a good solution.
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Fig. 6. Frequency responses of a cascade form configuration with N = 33:
(a) first and second stage, and (b) overall filter.
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Filter Length (From [9, fig. 6))
N I>lb (dB) Gopt olb(dB)

21 -17.6 0.844 -17.4
23 -19.0 0.841 -18.5
25 -19.0 0.841 -18.7
27 -19.8 0.850 -19.4
29 -20.7 0.845 -20.5
31 -20.9 0.854 -20.5

Global Filter Stage 1-2
Length Filter Length (From [9, fig. 6))

N N1,N2 olb(dB) I>lb (dB)

21 II, II -24.8 -23.3
23 13, II -28.3 -24.7
25 13, 13 -29.1 -27.2
27 15, 13 -29.2 -27.7
29 15, 15 -30.4 -29.5
31 17, 15 -32.2 -32.8
33 17,17 -35.9

On designing a low-pass filter with passband and stop­
band edges of 0.15 and 0.22, the results of the direct form
configuration are presented in Table VI where, for various
filter lengths N, the optimum value of 0/b and corre­
sponding Gopt are reported. Data from [9, fig. 6] are re­
ported in the last column. We can say that for a direct
form the two methods yield similar results. This was also
Section Ill's conclusion. However, when we consider a
cascade form filter configuration with two stages, the it­
erative procedure of [9] provides inferior results, as shown
in Table VII. Indeed, up to 3.5 dB improvement (the case
for N = 23) was obtained by using the global optimization
SA algorithm. Incidentally, these results were obtained
by setting the filter gain G to one, because we did not
notice any improvement by keeping it variable. Fig. 6
shows the frequency responses of the case for N = 33.
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