
Abstract - This paper is concerned with the selection of a 
number of nodes in polynomial artificial neural nets 
containing stochastic noise perturbations in the outputs of 
each node. The suggested approach is based on a 
reinforcement learning technique. To solve this 
optimization problem we introduce a special performance 
index in such a way that the best number of nodes 
corresponds to the minimum point of the suggested 
criterion. This criterion presents a linear combination of a 
residual minimization functional and some “generalized 
variance” of the involved disturbances of random nature. 
A large value of the noise variance leads to a different 
optimal number of neurons in a neural network because of 
the “interference” effect. Simulation modeling results are 
presented to illustrate the effectiveness of the suggested 
approach. 
Index Terms: polynomial neural nets, stochastic, learning 
automata, best number of nodes. 

1. Introduction 

Artuficiad Newat Networks (ANN) are a very important 
tool in a variety of engineering problems. Special interest 
to applications of ANN in control optimization and 
pattern recognition have been proved to be successful 
[5][14][15]. However a few of them discuss the problem of 
best selecting an ANN structure in the application to some 
concrete engineering problems [4]. Some of them consider 
upper and lower bounds for the number of nodes in the 
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hidden layer [9]. Other papers discuss the influence of the 
number of nodes and hidden layers in the minimization of 
square error for a specific application [ 1 J [2] [ 191. Other 
papers suggest algorithms to estimate the number of nodes 
for different paradigms [8] [3] [6] [7] [ 111. However, the 
number of nodes within each hidden layer is assumed to 
be different for different engineering applications. As it 
was shown in [ 181, in the presence of noises of stochastic 
nature there exists a constructive technique providing “the 
best selection” of the number of nodes in the used ANN. 

In this studv we deal with Polynomial Artificial Neural 
Networks (PANN) containing stochastic disturbances in 
the output of each node. The aim is to derive an adaptive 
procedure providing the best (from the approximation 
accuracy point of view) selection of the number of nodes 
for a given PANN structure using only available 
information containing measurable input and output 
signals. In [ 181 this problem has been solved under the 
assumption that complete statistical information on 
stochastic noises was known a priory for a single node. 

To realize an optimization procedure in the absence of 
complete information on the model description we need to 
apply some sort of “leaming” to reach finally a successful 
selection procedure. In the case of discrete optimization on 
a finite set (because of the selection from a given finite set 
of possible structures) in the presence of random 
disturbances we suggest to apply Learning Automata 
Technique which turned out to be very effective in those 
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situations [ 13][ 121 [ 171. We apply the ideas presented in 
[20] to construct the structure adaptation process. 

The paper has the following structure: Section 2 deals 
with the description of PANN and the statement of the 
problem; in section 3 we formulate the problem of the best 
selection of the number of terms in the approximation 
problem of a multidimensional function in the presence 
of noises which depended on points of measurement. 
Section 4 shows how the main problem for selecting the 
best number of nodes in PANN can be transformed into 
the previous approximation problem. Sections 5 describe 
the learning automata technique and the Bush-Mosteller 
procedure as a reinforcement scheme to obtain the optimal 
number of nodes. Section 6 explains the application of 
learning automata for selecting the best number of nodes 
in PANN. The description of the numerical algorithm is 
given in section 7 with some simulation results and 
examples. Conclusion is presented in section 8. 

2. Polynomial Artificial Neural Nets with 
Stochastic Noises and Formulation of the 
Problem 

We present here the basic description of the PANN 
model containing stochastic noises in the outputs of each 
node. This model is assumed to be in force throughout the 
paper. 

x1 ,k-1 ?2,k-l l l . l xl,k-ndi 
(1) 

. - . . . . . Yk-1 Yk-2 l -Yk -nd,) + <k  
where: 

ndi number of delays of the input 
ndo number of delays of the output 

* w is a nonlinear function 
6 is a random variable 
Y is the estimated function 
The corresponding block diagram of a single node is 

depicted in fig. 1. 
This non-linear function can be represented as: 

where zi is an input of the model, HV is the total number 
of elements in 40 description: 

ITV = ni + dvi + dvo (3) 

pow is the maximum power of the polynomial expression 
and ai(z~,z~,z~) is a homogeneous polynomial of total 
degree i, for i=O, . . . ,pow, such that: 

a,(z,,~,,...,z,J = c, 

a, (q,~2Y**&) =c1121 +c,,z, +.“+C1nvZnv > > > 
a&22, “‘3 Znv) = cz,lzf +c2,2z1z2 + c2 32123 , + ..*.z,z,, + . ..z. + ..,. 2223... 

a&&.** &tv) = ‘3,l’; + ‘3,2’:‘2 +c3,3z~z3 + c3,4z1z; +c3,5z1z2z3 +‘3: 

+...z; +..zfz3 + l .2,2,2 + . . . . + c, z3 
3 rlv 

a p*w(z1,z2,...,z,,) = cpowlzpow +cp~2zf-1z2 +...+CpmN zpuw , > 2 pow nv 

(4) 

where A$ is the number of terms of every polynomial such 
that j=l,...pow. The number of terms N is euual: 

POW 

N=CNj 
j=I 

I 

(5) 

Figure 1 Scheme of PANN 

Main Problem: using the observation sequences of the 
input and output signals of each node, construct a 
learning procedure to obtain asymptoticatty “the best” 
(in some probability sense) numbers N of neurons 
providing the minimal approximation error. 

Next section explains the solution of this problem for 
the case of given basis functions used for the 
approximation aims. 

3. Optimal Order Selection of Approximation 
of Multi Dimensional Functions in the 
Presence of Dependent Noises 

The following assumptions will be in force throughout: 
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Al) Vector input X~ E p and scalar output yk E RI of a 
static reference model are connected by the following 
regression equation: 

where s,” is defined by (6) and 

the mean-spare the 
approx~mution (5) after YE measurements of the pairs where n is the number of available measurements, & E 

RI represents non-measurable disturbances of stochastic 
nature at the instant k and is a random variable defined on 
the probability space (QF,P) such that: 

(xt;yj. This criterion 1s a generalization of Akaike 
Criterion to the case of time varying noise variances [20] 

E{&)- = ‘7 E{&r,) = da, 

(here 05 = 05 (xJ is the variance of the random variable 

4. Selecting the Best Number of Nodes in 
PANN: The Case of Complete Information 

that may be dependent on the input xk ; dk, - Next theorem shows the equivalence of the previous 
statement on the best order of the approximation (7) to the 
central problem of the optimal selection of the best 
number of nodes in PANN. 
Let the following assumptions hold: 
Bl) The output of the PANN is described by the following 
relation: 

Kronecker’s symbol). 
A2) The approximation model is selected as follows: 

(7) 

where $N(Xk) represents a known function and Ci a 
weight of this function in the output of this model, N is the 
order of this approximation model or, in other words, the 
number of different terms in the approximation given 
above. 
A3) Parameters of the model (5) are chosen based on the 
Weighted Least Squares Method (WLSM) [lo]: 

where ci is the weight associated. 
B2) noise at the output & of each node is a random 
variable defined on some probability space (QF,P) such 
that they are stationary, independent in time and are 
centered with finite variance, i.e. 

B3) The non-linear function can be represented like 
~@1’~2Y”” 2,)=c,,2, +c,,z, -I-... + clmzm + C2 12: + C2 ZZlZ2 + C2 3zlz3 + 9 , , , , , 

. . . . z,z,, + . ..g + . ..z.z, . . . + c,,+$ z,‘, + c, 123 + c, 
7 1 , 

2.zfz2 + c, ,z;z, 
D 

+ c, 421z,2 + c, ,z,z,.2, + c, &,2,2 + . . . + 2; + ..z;z, + . ..z..z; , , , 

+ . . . . + c,, z3 c , 3 zpw + c,, 2zfow-1z2 + . . . + CpwN nv”““’ pow,1 1 I ‘pow zn9p” 

(14) 
Then the nonlinear model (13) of the given neural 

node is equivalent to the static plant model (6). Then for a 

It is easy to show (minimizing this function) that the 
vector c^, , corresponding to the minimizing solution of 

the WLSM-method, can be expressed by the following 
formula: 

-’ 

(9) large k--+co cc the number” 

(Nn(w,))* of the inputs of (node) (i=f,2,...,N) with 

probability one (almost sure) can be calculated: 
or, in equivalent recurrent form: 

The dependence of the function 0,” (@k ) (12) on N 

is depicted on fig. 2. It is clear that the curve gnN (Us) 

corresponds to the accuracy of the approximation. Curve 2 
N 

(the term 2 - ) corresponds to the influence of the noises 
F-2 

on the approximation process for different values of N; 
more noisy inputs produce more distortions in the 
measurements of the outputs of each node. The optimal 

yn -(Ly,qxn) 1 (lo) r,N = r,“-1 - r,“-14%ngPk))%:1 0,’ + 6” (Xnlr ~:14”@n) 
Theorem 1, 1231 Under the assumptions Al)-A3) for the 
WLSM-method the following relation holds: 

D; = EIS,N}+2N-1 -(II) 
n 

392 



value of the number of inputs (NH)* corresponds to the 

minimum value of “the joint loss functions ” 0,” 

N 

Figure 2 Function 0,” 

Notice that if the value of the variance CTL increases then 

the curve gN moves down and the optimal number of 

inputs N, ( 1 * moves to the left. 

One disadvantage of this method is that we need to 

estimate E { S,N } and, in some cases, we have to use a lot 

of computing time to obtain a solution. Next section 
explains how to avoid this kind of problems using 
learning automata technique. It provides some sort of 
“adaptation” within a process of structure tuning. 
Learning Automata are the heart of this approach. 

5. Learning Automata 

A learning automaton (see, [12]) is a system 

c= {E,X,U,P,%) (15) 
where E is the set of inputs (environment outputs) & at 
time n; X=&(l), . . . . . . ,xao/’ is the set of states; U=@(l), 
. . . . . . . . uOJ is the set of outputs; P is the set of probability 
vectors pn=pn(l), . . . .,p,p) E P , the probability ppl(i;) 
corresponds to a probability to select the output ZJ,=U@, 
i=l , . . . .,N at time pz; SY is the reinforcement scheme 

R pn + Pn+r 
responsible for the change of this probability vector and is 
based on given measurements to obtain the best behavior 
in a given environment. Here we shall consider static 
automata (finite systems). 

Usually, the relation between the environment outputs 
C’=&&V~, w) (m is a random factor) and the loss function 
@n associated with a learning automaton is given by the 
following expression: 

I n 
@ -- n- cc t n t=l 

3 \ 

I 
U.A 
’ FJ loss function 

multimodal function construction 

\ ) ENVIRONMENTS 

----+--I AUTOMATON I- 

Figure 3 Learning Automata and its environment. 

The problem to be solved in Learning Automata 
Theory can be formulated as follows: Find a 
reinforcement scheme which generates the sequence {pJ 
and consequently {u,), and enswes asymptotically the 
minimization of the loss function (I 7), i.e. 

limszkp Dn -3 inf (17) 
rl+m b4.J 

in some probabilistic sense (fig. 3). In the next section it is 
explained in detail one of the reinforcement schemes used 
in this paper. Let us consider one of the popular 
reinforcement schemes developed by Bush and Mosteller 
(1958), which is described by the following recurrent 
algorithm: 

P rz+l =p, +~n[e(u,)-& +‘&ceN -Ne@n))l(N-1)](18) 

Pl (9 ’ 0, (i = l,.....N) 

where: 5, E [OJ], e(u,) = (0,O , . . . . , I , . . . . . . 
-ii- 

0 0) 
T , Y 

n 

eN = (l,l,l,..., l,QT E tRN 
where tin is generated according to the probability 
distribution pn for the available data; and KE(O, 1) is the 
correction factor (adaptation gain) of this scheme. 

The results concerning the convergence properties of 
this scheme for non-binary (continuous) and non- 
stationary continuous environment reactions can be found 
in [16] [17]. 

6. Optimization of the Joint Loss Function 

This sections deals with the application of learning 
automata to the problem of multimodal function 
optimization based on the approach derived in [12] and 
11171. and explains the relation of this problem to the 
neural networks synthesis. 

Let r@) be some real valued function of a vector 
parameter x E X c Y? fl is a compact in Y?) and let that 
r(x) be a multimodal function. We wish to find the value 
X=X* which minimizes r(x). Let us now consider a 
quantification {Xi) of the admissible regionX, i.e. 
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*j cX, Xi nXjgi =0, i, j=l,......, lV 

(19) 
i=l 

Let qn be the observation of r&J disturbed by the noise 
w, such that 

4 n = r(xn) + w, (20) 

where xn E {x(l), . . . . 9 x(;7v)], x(i) E Xi are some fixed points 
and w, is a random variable which characterizes the noise 
of the observation. The central idea associated with the 
use of a learning automaton is connected to the manner of 
constructing the inputs of this automaton. The automaton 
input cf at time t is constructed following the next 
“normalizing procedure ” [ 121: 

St W - min qI (j) 
4 

i - 1 + ' % = x(i) (21) f-- 
mux s,(k) - min ster (j) + 1 

i 1 + 

St(i) = 
2 ( 41x % = x(i)) 
I=1 

&Jl = m> ' 
C=l 

i = I,....,N (22) 

Let us now use the learning automaton described above 
to select the point x(a) which corresponds (in some sense) 
to the minimum value of the multimodal function p{xJ on 
the set X. This process can be organized as shown in fig 3. 

To adapt this approach to our structure optimization 
problem we have to select qn = 0,” , u,=N, where N, is 

the nu mber of nodes selected in a PANN model at time ~1. 
So, in our case qn represents the joint loss fun& .on D,: 

and U, the order of the model to be selected. Notice, that 
here we have only to select one point of X~ at each time n 
(each iteration) to calculate the minimal value of the 
function r@J. Finally, generating the random sequence 
u,=N, according to the probability distribution pn, which is 
changing in time as in reinforcement scheme (18) with the 
normalizing procedure (2 1). 

In this case we use two layers of learning automaton to 
avoid convergence problems. 

Suggested algorithm for every layer consists of the 
following steps: 

1. Generating the control signal U, using the given 
distributionp, and a given number of observations. 

2. Calculating the realization of the functions 0,” : 

3. Return to step 2 until one of the probabilities tends 
to 1. 

In this situation during this adaptation process we 
select often and often the number of nodes Nt which 
corresponds to the minimal point of the performance 

index 0,” to be minimized. The probability that tends to 

1 when t-w corresponds to the value Ng * 
( ) 

which n 
represents the argument that minimizes the loss function 

( > 
* 

D iv 
n ’ e.g. Nz is the optimal number of nodes. 

7. Illustration Example 

For the numerical example we select the lorenz 
equations (Fig. 4) to be approximated by PANN. With 
ndo=3 and oc=l Fig. 5 shows the evolution of the 
component pn which corresponds to the best number of 
nodes. The simulation results show that after 500 steps of 
a learning procedure, the reinforcement scheme (19) 
selects only the control action U, =17 (See Histogram for 
the control action). (Remember that the automaton is of 
two layers and u, is the value of the first interval more the 
result of the second interval). It means that the learning 
process is practically finished. 

PROBABILITY VECTOR PROBABILITY VECTOR 

HISTOGRAIWE FOR THE CONTROL ACTION 2 
500 

400 

300 

200 

100 

0 I_ 
0 2 4 6 8 19 

Figure 5 Probability and Criterion using cc=1 

only for the point Nn=uR. 
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Figure 6 Probability and Criterion using 0=10. 

The curve at fig. 5, corresponding to the loss function 
evaluation (pn with & defined by (21)-(22), shows its 
decrement. Then we change the value of orfo demonstrate 
that the best number of nodes change with the 
disturbances increment. As it is shown in fig. 6 for 
C-F<= 10 the control action U, is 5. In the case when the 
noise variance increases, the best number of nodes is less 
than in the previous case. 

8. Conclusion 

A learning system has been proposed to obtain the 
optimal number of nodes in ANN using loss function 
criterion (of the Akaike type) and Bush-Mosteller 
reinforcement scheme. 

The research analysis presented in this paper clarified 
the following properties of ANN: 

l if physical devices which realize a given ANN are 
“non ideal” (produce any distortions at inputs or 
outputs), then there exists an optimal number of nodes 
in Artificial Neural Networks, which can be detected 
by the learning process suggested here; 
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