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Abstract 

New digital architecture of the frequency-based multi- 
layer neural network (MNN) with on-chip learning is 
proposed. As the signal level is expressed by the fre- 
quency, synaptic multiplier is replaced by a simple fre- 
quency converter, Furthermore, the neuron unit uses 
a voting circuit as the nonlinear adder to have better 
nonlinear activating function. The back-propagation 
algorithm is modified for the on-chip learning. 

The proposed MNN architecture is implemented on 
field programmable gate array (FPGA) and the vari- 
ous experiments are conducted to test the performance 
of the system. The experimental results show that the 
proposed neuron has a very good nonlinear function 
owing to the voting circuit. The learning behavior 
of the proposed MNN is also tested by experiments, 
which show that the proposed MNN has *good learn- 
ing performance and generalization capabilities. 

1 . Introduction 

One of the effective approach for the hardware imple- 
mentation of neural network is the pulse stream based 
architecture which uses stochastic computing [ I]-[ Z]. 
The stochastic computing is performed with basic logic 
gates using random pulse sequences as inputs. Synap- 
tic multiplication is performed with a simple AND 
gate. In stochastic digital neurons, pulses from differ- 
ent synapses are OR-ed together, which provide pulsed 
nonlinearity. The pulsed nonlinearity is based on sta- 
tistical saturation and the activation function is easily 
realized. However, the drawback is that the activation 
function provided by the pulsed nonlinearity is almost 
fixed and the accuracy of the pulse mode computin is 
inferior to that of fully digital arithmetic operation & 31. 

In this paper a new digital architecture of the mul- 
tilayer neural network (MNN) with on-chip learning, 
based on frequency modulation (FM) is proposed. As 
the signal level is expressed by the frequency, synap- 
tic multiplier is replaced by a simple frequency con- 
verter. The synapse unit uses a direct digital frequency 
synthesizer (DDFS) as the frequency converter. The 
DDFS is much simpler than numerical multiplier. The 
proposed neuron unit performs nonlinear addition on 
the weighted neuron outputs. In order to improve the 
accuracy of neuron output, a voting circuit is employed 
for the addition, Furthermore, the voting circuit is 
enhanced so that the nonlinear activation function is 
adjustable. 

The most important feature of neural networks is 
their learning ability. Size and real-time considerations 
show that on-chip learning isnecessary for wide range 
of applications. To provide the on-chip learning, the 

back-propagation algorithm is modified to have pulse 
mode operation. The proposed MNN is implemented 
on filed programmable gate array (FPGA), and the 
performance of the MNN is verified by experiments, 

2 . Multilayer Neural Networks 

The operation of the MNN is divided into two phases, 
i.e., learning phase and retrieving phase. During the 
learning phase, weights are adjusted to perform a par- 
ticular application and the learning phase consists of 
forward operation and backward operation. In the 
forward operation, the output of the network is cal- 
culated from input data and the learning algorithm 
is performed during the backward operation. In the 
retrieving phase, the same operation as the forward 
operation is executed. 

2.1. 2.1. Forward operation Forward operation 

During the forward operation, data from neurons of During the forward operation, data from neurons of 
a lower layer is propagated forward to neurons in the a lower layer is propagated forward to neurons in the 
upper layer via feed-forward connection network. Let upper layer via feed-forward connection network. Let 
o(‘) denote the output of k-th neuron of the s-th layer, o(‘) denote the output of k-th neuron of the s-th layer, 
then the computation performed by each neuron is then the computation performed by each neuron is 
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2.2. Back-propagation algorithm 

Training algorithm is performed in the backward op- 
eration. The back-propagation algorithm is the most 
widely used training algorithm in MNN. First, the for- 
ward operation is executed to obtain the ouput re- 
sponse against the input training pattern. Then error 
between the training data and the actual ouput value 
is propagated in backward, and the error is used to 
update the synaptic weights. The back-propagation 
algorithm is expressed by, 
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Figure 1: Synapse unit with DDFS 
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Figure 2: Voting neuron with smoothing circuit 
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where, f’(e) is the derivative of the activation function. 

3 . Frequency Based Multilayer Neural 
Network 

Proposed MNN uses two computational elements, one 
is a synapse unit and the other is a neuron unit. The 
synapse unit performs the synaptic weight multiplica- 
tion and the neuron unit performs nonlinear addition 
on the weighted neuron outputs. These units also pro- 
vide the on-chip learning capability. 

3.1. Synapse unit 

In the synapse unit, neuron output is multiplied 
by a synaptic weight. As the proposed network uses 
frequency to represent the signal levels, the multi- 
plier is replaced by a programmable frequency con- 
verter, Block diagram of the synapse unit is depicted 
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in Figure 1. The synapse unit uses a direct digital 
frequency synthesizer (DDFS) as the frequency con- 
verter. The DDFS is much simpler than numerical 
multiplier. DDFS consists of two parts: an adder and 
a register. The adder gives an increment of Kw to 
the register in every sampling period of TI that is the 
reciprocal of the input frequency f~. The most signif- 
icant bit (MSB) of the register is taken as the output 
of the DDFS. Thus the output cycle is equal to the 
interval at which the content of the register-exceeds 
2L and overflows occur. Therefore, the frequency of 
register’s MSB is given by: 

fiM233 = 
KW 
- fI 2L (fv 

0 < Kw < 2L-1 (MSB of KW is 0) 

fMSB = 
ZL-Kw 

2L fI (7) 

ZL-’ < Kw < 2L (MSB of KW is 1) - 

where L is the bit length of the register. Equations 
(6) and (7) show that the maximum frequency of the 
DDFS is the half of input frequency, i.e., the valid 
weight value is between 0.0 and 0.5. To enhance the 
weight range the edge detector is employed, which de 
tects the low-to-high and high-to-low transitions of the 
MSB and gives output pulse at both edges of the MSB 
signal. The synapse unit has two kind of output sig- 
nals, i.e., excitatory (positive) and inhibitory (nega- 
tive) outputs. The DDFS output is selected as the 
excitatory signal when the MSB (sign bit) of Kw is 
0, otherwise it is used as the inhibitory signal. Hence 
the valid weight range is between -1.0 and 1.0. The 
weight value is represented in two’s complement for- 
mat. 

3.2. Neuron unit 

In the neuron unit weighted neuron outputs in the 
lower layer are summed up and the output is gener- 
ated using the activation function f(). In the stochas- 
tic neuron (21, excitatory and inhibitory synaptic out- 
puts are summed by OR gates. Then these signals 
are used to generate the neuron output. The problem 
is that the neuron output pulse is canceled whenever 
the inhibitory pulse is applied. For example, a single 
inhibitory pulse prevent the neuron from generating 
outpout pulse even though the number of excitatory 
input pulse is much more than that of inhibitory pulse. 
To alleviate the problem a voting circuit is employed as 
the nonlinear adder in the proposed MNN. The voting 
circuit gives a single output pulse when the number 
of excitatory pulses exceeds the number of inhibitory 
pulse. Block diagram of the proposed neuron unit is 
depicted in Fig. 2. The voting circuit consists of a 
comparator and a pulse count circuit which counts 
the number of ‘l’s in the input signals. As well as 
the stochastic neuron, the voting neuron takes advan- 
tage of the statistical saturation, which provides the 
nonlinear addition to realize the nonlinear activation 
function f (Hk). As long as pulses are not frequent 
(low signal level), the pulse count at the output of 
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Figure 3: Configuration’ of the proposed MNN 

the voting circuit equals the net sum of individual 
pulse counts at the inputs. However, when pulses be- 
come more frequent (higher signal level), the chance of 
pulses masking each other becomes significant. Total 
pulse count then saturates to a maximum. The draw- 
back of this simple method is that the shape of the 
activation function is almost fixed [3]. To change the 
characteristic of the non-linear function, a smoothin 
circuit is added between the pulse count circuit an 3 
the comparator. The output of the smoothing circuit 
Sp(i) and S,(i) are: 

S-l 
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where, Np(i) and N&) are the number of the ex- 
citatory pulse at i-th sample and the number of the 
inhibitory pulse at i-th sample, respectively. The neu- 
ron output at i-th sample f^(i> is, 
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3.3. On-chip learning 

(10) 

To provide the on-chip learning, the back-propagation 
algorithm is modified to have pulse-mode operation for 
the effective hardware implementation. System con- 
figuration of the proposed MNN architecture with on- 
chip learning is depicted in Fig. 3. The upper half of 
Fig. 3 is the on-chip learning circuit, i.e., the hardware 
implementation of the back-propagation algorithm. 

As well as the forward signals, the error terms 0:) 
(8) ’ and 6k n-r (3) are represented by pulse signals. The er- 

ror term is propagated through two signal lines, error 

and sign. When the teaching signal and the output 
signal take different values, error pulse signal is gener- 
ated and transferred in the error line, and the sign 
signal indicates the sign of the error. As shown in 
Fig. 4, during the learning phase, the MNN uses two 
kind of time slots, one is for the forward operation and 
the other is used for the backward operation. Pulse 
signals related to the forward operations, such as in- 
put, synapse output and the neuron’s output pulse se 
quence are placed in the forward time slot. Then, the 
error pulse signals are generated and they are propa- 
gated to the lower layer using the backward time slot. 

The back-propagation al orithm uses the derivative 
of the activation function. 1 pulse differentiator is em- 
ployed to generate the derivative f ‘(I&). As shonw in 
Fig. 4, the differentiator gives output pulse every time 
it finds the head and the last of pulse stream. It is 
reported that the learning performance of the MNN 
with back-propagation al orithm can be improved by 
adding an offset G(< 1.0 to f ‘(I&) [4]. A random ‘, 
pulse generator is used to add the offset G. A pseudo 
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Figure 5: The nonlinear functions of stochastic 
neurons with DDFS weights. 

Figure 6: The nonlinear functions of voting 
neurons with DDFS weights. 

random sequence of bits with the probability P( 1) = G 
of having a ‘1’ in the sequence is added to f’(Hk) by 
using OR gate. Linear feedback shift register (LFSR) 
is employed for the generation of the pseudo random 
sequence. These signals are used to update the up- 
down counters that contain synaptic weights. To cal- 
culate wc8++j(B+‘) ’ 

h j m (3), instead of the actual weight 
value, the sign bit (MSB) of the weight is multiplied 

by the error term @t’). As the sign bit takes two 
values (zero for positive, one for negative), the mul- 
tiplication is significantly simplified. The circuit to 
perform the operation is a single exclusiveOR gate, 
which inverts the sign signal when the MSB of the 

weight is one. The multiplication $‘j’(H~“‘) in (4) 

and the multiplication of $%J$‘-‘) in (6) are realized 
by logical-AND gates using stochastic multiplication. 

4. Experiments 

The proposed MNN is implemented on FPGAl and 
experiments are conducted to verify the feasibility of 
the proposed architecture. The weight value is ex- 
pressed;n g-bit signed fixed-point format and the size 
of register used in the DDFS is g-bit. The experiments 
with-the stochastic weight multiplier and neuron are 
also performed. The stochastic random weight mul- 
tiplier uses the random pulse generator based on 8- 
order LFSR and the random weight circuit takes g-bit 
weights (the additional bit is a sign bit). 

4.1. Neuron characteristics 

First, the’characteristics of the activation function are 
measured. The relation between HI, and f(&) of the 
stochastic neuron and the voting neuron are depicted 

‘XILINX, XC4013 
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l.O/(l+exp(-1.5*(x-0.5))) - --. 

in Figures 5 and 6. The voting neuron used here does 
not include the smoothing circuit. It is very clear that 
the characteristic of the voting neuron is much better 
than that of the stochastic neuron. The characteris- 
tic of the proposed voting neuron has a very smooth, 
sigmoid-like function, whose output variance is much 
smaller than that of the stochastic neuron. 

The second experiments measure the effect of the 
smoothing circuit on the neuron’s non-linear func- 
tion. The neuron characteristics are measured using 
the same configuration as the previous experiments. 
The experimental results with S = 8 and S = 24 are 
depicted in Fig. 7. For the comparison, neuron char- 
acteristics with the stochastic weight multiplier are 
also tested. These figures show that the effect of the 
smoothing circuit is more significant with the DDFS- 
type synapse unit. Even though the DDFS weight val- 
ues are restricted between -1.0 and 1.0, the flexibility 
of design is greatly improved with this enhancement. 

4.2. On-chip learning performance 

The pulse differentiator employed to generate f’(Hk) 
for the back-propagation algorithm finds the head and 
the last of the pulse train and generates output pulses. 
Using the neuron signal shown in Fig. 6 as the input, 
the differentiator output is shown in Fig. 8, which is 
very close to the derivative of the nonlinear character- 
istic shown in Fig. 6. 

The proposed MNN is trained to perform simple 
binary logic functions. The MNN used for the ex- 
periment has three neurons in the input layer, three 
neurons in a hidden layer and a single output neuron. 
The input and the hidden layer both include the off- 
set neuron which always gives ‘1’ output so that the 
weights connected to the offset neuron act as the offset 
0. DDFS synapse unit is used for weighting the neu- 
ron output. The parameter S used in the smoothing 
circuit is eight. The whole MNN circuit and a trainer 
unit is implemented on a single FPGA. 
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Figure 9: Signals in the MNN learning logic functions, (A) before learning, (B) after learning 
(exclusiv*OR function) l 

Signals in the experimental MNN during the learn- 
ing are depicted in Fig. 9. In the figure, a simple logic 
function (exclusiveOR) is used as the target function. 
IO, 11 are the input signals, TO is the teaching signal, 

and FKO is the output of the MNN (oc2) . As the fig- 
ures show, the proposed MNN success PI ul y learned the 
exclusive-OR function. 

Next experiment is the problem of classifying points 
inside and outside a shaped region [5]. The MNN used 
in this experiment has two inputs and one output, 
which given the X, y coordinates of a point within the 
square region bounded by 0 < r: < 1 and-0 < y < 1, 
is trained to recognize if the given point lies &side or 
outside a particular shaped region. The network out- 
put is zero if the point lies outside, one if it lies inside. 
The network has three neurons in its input layer, and 
a single hidden layer that contains five neurons. The 
output layer has a single neuron. The third neuron 
in the input layer and the fifth neuron in the hidden 
layer are offset neurons to provide offset 8. The whole 
network and the trainer unit takes two FPGAs. Us- 
ing a training data set, the network learned to classify 
the given coordinate (x, y) by itself using its on-chip 
learning mechanism. The training data set consists of 
128-data which is randomly selected from the origi- 
nal data set (256 data) and after the learning, all 256 
reference points are fed to the network to test the gen- 
eralization capability. Fig. 10 shows the training sets 
and the response of the MNN after 8192 iterations of 
training. Output levels are represented by the diame- 
ter of black circles, As the parameter S increases, the 

output pattern becomes clear shape and with S = 24, 
the output plot resembles very much the target shape 
even though the training data is incomplete. Thus, 
these experiments indicate that the proposed MNN 
has very good generalization capability as well as the 
on-chip learning mechanism is very functional. 

5 . Conclusion 

New digital architecture of the frequency-based MNN 
with on-chip learning has been discussed. The pro 
posed MNN architecture is implemented on FPGAs 
and the various experiments are conducted to test the 
performance of the system. First, the neuron char- 
acteristics are measured by the experiments, and the 
results show that the proposed MNN has a very good 
nonlinear function owing to the voting circuit. The 
learning behavior of the on-chip learning capability of 
the MNN is also tested by experiments, which show 
that the proposed MNN has good learning perfor- 
mance and generalization capabilities. 
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