
Learning Performance of Frequency-Modulation Digital Neural
Network with On-Chip Learning
Hiroomi Hikawa, Oita university, Oita, Japan

Abstract

New digital architecture of the frequency-based multi-
layer neural network (MNN) with on-chip learning is
proposed. As the signal level is expressed by the fre-
quency, synaptic multiplier is replaced by a simple fre-
quency converter, Furthermore, the neuron unit uses
a voting circuit as the nonlinear adder to have better
nonlinear activating function. The back-propagation
algorithm is modified for the on-chip learning.

The proposed MNN architecture is implemented on
field programmable gate array (FPGA) and the vari-
ous experiments are conducted to test the performance
of the system. The experimental results show that the
proposed neuron has a very good nonlinear function
owing to the voting circuit. The learning behavior
of the proposed MNN is also tested by experiments,
which show that the proposed MNN has *good learn-
ing performance and generalization capabilities.

1 . Introduction

One of the effective approach for the hardware imple-
mentation of neural network is the pulse stream based
architecture which uses stochastic computing [I]-[Z].
The stochastic computing is performed with basic logic
gates using random pulse sequences as inputs. Synap-
tic multiplication is performed with a simple AND
gate. In stochastic digital neurons, pulses from differ-
ent synapses are OR-ed together, which provide pulsed
nonlinearity. The pulsed nonlinearity is based on sta-
tistical saturation and the activation function is easily
realized. However, the drawback is that the activation
function provided by the pulsed nonlinearity is almost
fixed and the accuracy of the pulse mode computin is
inferior to that of fully digital arithmetic operation & 31.

In this paper a new digital architecture of the mul-
tilayer neural network (MNN) with on-chip learning,
based on frequency modulation (FM) is proposed. As
the signal level is expressed by the frequency, synap-
tic multiplier is replaced by a simple frequency con-
verter. The synapse unit uses a direct digital frequency
synthesizer (DDFS) as the frequency converter. The
DDFS is much simpler than numerical multiplier. The
proposed neuron unit performs nonlinear addition on
the weighted neuron outputs. In order to improve the
accuracy of neuron output, a voting circuit is employed
for the addition, Furthermore, the voting circuit is
enhanced so that the nonlinear activation function is
adjustable.

The most important feature of neural networks is
their learning ability. Size and real-time considerations
show that on-chip learning isnecessary for wide range
of applications. To provide the on-chip learning, the

back-propagation algorithm is modified to have pulse
mode operation. The proposed MNN is implemented
on filed programmable gate array (FPGA), and the
performance of the MNN is verified by experiments,

2 . Multilayer Neural Networks

The operation of the MNN is divided into two phases,
i.e., learning phase and retrieving phase. During the
learning phase, weights are adjusted to perform a par-
ticular application and the learning phase consists of
forward operation and backward operation. In the
forward operation, the output of the network is cal-
culated from input data and the learning algorithm
is performed during the backward operation. In the
retrieving phase, the same operation as the forward
operation is executed.

2.1. 2.1. Forward operation Forward operation

During the forward operation, data from neurons of During the forward operation, data from neurons of
a lower layer is propagated forward to neurons in the a lower layer is propagated forward to neurons in the
upper layer via feed-forward connection network. Let upper layer via feed-forward connection network. Let
o(‘) denote the output of k-th neuron of the s-th layer, o(‘) denote the output of k-th neuron of the s-th layer,
then the computation performed by each neuron is then the computation performed by each neuron is

N I N 3-

=-l (8) - (8) - Hlc - Hlc - c c wlcj Oj wlcj Oj
(4 b-4 + @' (4 b-4 + @’

(1) (1)
j=l j=l

of’ = f(Hf)) of) = f(Hf)) (a> (a>
where layers are numbered from 0 to A& H(” is the where layers are numbered from 0 to A& H(” is the
weighted sum of the k-th neurons in the s-th fayer and weighted sum of the k-th neurons in the s-th fayer and

(4 ’ (4 l (4 (4 ‘wlcj is the synaptic weight. The output ok ‘wlcj is the synaptic weight. The output ok of the neu- of the neu-
ron is obtained by computing an activation function ron is obtained by computing an activation function
f() on the weighted sum. Usually sigmoid function is f() on the weighted sum. Usually sigmoid function is
used as the nonlinear activation function f(e). used as the nonlinear activation function f(e).

2.2. Back-propagation algorithm

Training algorithm is performed in the backward op-
eration. The back-propagation algorithm is the most
widely used training algorithm in MNN. First, the for-
ward operation is executed to obtain the ouput re-
sponse against the input training pattern. Then error
between the training data and the actual ouput value
is propagated in backward, and the error is used to
update the synaptic weights. The back-propagation
algorithm is expressed by,

(8) s=M
(8) -

tl, -0

Olc - c
N Ic 9+1 (s+l>g(8+1>
j=l wkj * (3)

S "l;* *M--l

O-7803-4859-1/98 $10.0001998 IEEE 557

Synaptic weight u$’

* I

Input Register

pulse’ Load MSB
Edge detector

I
I(L bit I

Figure 1: Synapse unit with DDFS

Excitatory
inputs

Smoothing circuit!

Smoothing

Inhibitory
inputs

--

Figure 2: Voting neuron with smoothing circuit

p -
k - af)f’(Hf)) s = l,-,A4 (4)

(5)

where, f’(e) is the derivative of the activation function.

3 . Frequency Based Multilayer Neural
Network

Proposed MNN uses two computational elements, one
is a synapse unit and the other is a neuron unit. The
synapse unit performs the synaptic weight multiplica-
tion and the neuron unit performs nonlinear addition
on the weighted neuron outputs. These units also pro-
vide the on-chip learning capability.

3.1. Synapse unit

In the synapse unit, neuron output is multiplied
by a synaptic weight. As the proposed network uses
frequency to represent the signal levels, the multi-
plier is replaced by a programmable frequency con-
verter, Block diagram of the synapse unit is depicted

558

in Figure 1. The synapse unit uses a direct digital
frequency synthesizer (DDFS) as the frequency con-
verter. The DDFS is much simpler than numerical
multiplier. DDFS consists of two parts: an adder and
a register. The adder gives an increment of Kw to
the register in every sampling period of TI that is the
reciprocal of the input frequency f~. The most signif-
icant bit (MSB) of the register is taken as the output
of the DDFS. Thus the output cycle is equal to the
interval at which the content of the register-exceeds
2L and overflows occur. Therefore, the frequency of
register’s MSB is given by:

fiM233 =
KW
- fI 2L (fv

0 < Kw < 2L-1 (MSB of KW is 0)

fMSB =
ZL-Kw

2L fI (7)

ZL-’ < Kw < 2L (MSB of KW is 1) -

where L is the bit length of the register. Equations
(6) and (7) show that the maximum frequency of the
DDFS is the half of input frequency, i.e., the valid
weight value is between 0.0 and 0.5. To enhance the
weight range the edge detector is employed, which de
tects the low-to-high and high-to-low transitions of the
MSB and gives output pulse at both edges of the MSB
signal. The synapse unit has two kind of output sig-
nals, i.e., excitatory (positive) and inhibitory (nega-
tive) outputs. The DDFS output is selected as the
excitatory signal when the MSB (sign bit) of Kw is
0, otherwise it is used as the inhibitory signal. Hence
the valid weight range is between -1.0 and 1.0. The
weight value is represented in two’s complement for-
mat.

3.2. Neuron unit

In the neuron unit weighted neuron outputs in the
lower layer are summed up and the output is gener-
ated using the activation function f(). In the stochas-
tic neuron (21, excitatory and inhibitory synaptic out-
puts are summed by OR gates. Then these signals
are used to generate the neuron output. The problem
is that the neuron output pulse is canceled whenever
the inhibitory pulse is applied. For example, a single
inhibitory pulse prevent the neuron from generating
outpout pulse even though the number of excitatory
input pulse is much more than that of inhibitory pulse.
To alleviate the problem a voting circuit is employed as
the nonlinear adder in the proposed MNN. The voting
circuit gives a single output pulse when the number
of excitatory pulses exceeds the number of inhibitory
pulse. Block diagram of the proposed neuron unit is
depicted in Fig. 2. The voting circuit consists of a
comparator and a pulse count circuit which counts
the number of ‘l’s in the input signals. As well as
the stochastic neuron, the voting neuron takes advan-
tage of the statistical saturation, which provides the
nonlinear addition to realize the nonlinear activation
function f (Hk). As long as pulses are not frequent
(low signal level), the pulse count at the output of

To other
synapse

units

0:positive 1:negative T Sign -

nnnnn v Error_

I CK Up/Down I
1 U p-dowi ;;;ter

I
1 w DDFS synapse

*w
j

other synpse units -

O(O) I c DDFS synapse t i

From other synapse units From other synapse units

Figure 3: Configuration’ of the proposed MNN

the voting circuit equals the net sum of individual
pulse counts at the inputs. However, when pulses be-
come more frequent (higher signal level), the chance of
pulses masking each other becomes significant. Total
pulse count then saturates to a maximum. The draw-
back of this simple method is that the shape of the
activation function is almost fixed [3]. To change the
characteristic of the non-linear function, a smoothin
circuit is added between the pulse count circuit an 3
the comparator. The output of the smoothing circuit
Sp(i) and S,(i) are:

S-l
.

SP(Z) = CNP(~--) (8)
k=O

S-l

&J(i) = xNN(i-k) 0
k=O

where, Np(i) and N&) are the number of the ex-
citatory pulse at i-th sample and the number of the
inhibitory pulse at i-th sample, respectively. The neu-
ron output at i-th sample f^(i> is,

A

f0 { i = 1 &(i) > s,(i)
0 sP(i) 5 SN (i)

3.3. On-chip learning

(10)

To provide the on-chip learning, the back-propagation
algorithm is modified to have pulse-mode operation for
the effective hardware implementation. System con-
figuration of the proposed MNN architecture with on-
chip learning is depicted in Fig. 3. The upper half of
Fig. 3 is the on-chip learning circuit, i.e., the hardware
implementation of the back-propagation algorithm.

As well as the forward signals, the error terms 0:)
(8) ’ and 6k n-r (3) are represented by pulse signals. The er-

ror term is propagated through two signal lines, error

and sign. When the teaching signal and the output
signal take different values, error pulse signal is gener-
ated and transferred in the error line, and the sign
signal indicates the sign of the error. As shown in
Fig. 4, during the learning phase, the MNN uses two
kind of time slots, one is for the forward operation and
the other is used for the backward operation. Pulse
signals related to the forward operations, such as in-
put, synapse output and the neuron’s output pulse se
quence are placed in the forward time slot. Then, the
error pulse signals are generated and they are propa-
gated to the lower layer using the backward time slot.

The back-propagation al orithm uses the derivative
of the activation function. 1 pulse differentiator is em-
ployed to generate the derivative f ‘(I&). As shonw in
Fig. 4, the differentiator gives output pulse every time
it finds the head and the last of pulse stream. It is
reported that the learning performance of the MNN
with back-propagation al orithm can be improved by
adding an offset G(< 1.0 to f ‘(I&) [4]. A random ‘,
pulse generator is used to add the offset G. A pseudo

I lBl lB, lBl lB, B B B B B ,B
I m i+h ++I I+-+1

I& + I& I& I& ,-;

I I I I I I I I 1 I I' I I 1 I I I I I I I

Inputn: n: n: n: n: n: n:
I1 I I I I, I I I I I, I

I Ill1 I Ill I II 1, I,,,,,,

: : : : : : : n:

I I I I I I I I I

ll~lty’~~~l~~:

F F F F F F F F F F
F: Forward slot B: Backward slot

Figure 4: Signals in the proposed MNN

559

0 0
0

0
0 0

00 O

0

I 1 1 I I I I I I . I

-4 -3 -2 -1 0 1 2 3 4 5

HK

Figure 5: The nonlinear functions of stochastic
neurons with DDFS weights.

Figure 6: The nonlinear functions of voting
neurons with DDFS weights.

random sequence of bits with the probability P(1) = G
of having a ‘1’ in the sequence is added to f’(Hk) by
using OR gate. Linear feedback shift register (LFSR)
is employed for the generation of the pseudo random
sequence. These signals are used to update the up-
down counters that contain synaptic weights. To cal-
culate wc8++j(B+‘) ’

h j m (3), instead of the actual weight
value, the sign bit (MSB) of the weight is multiplied

by the error term @t’). As the sign bit takes two
values (zero for positive, one for negative), the mul-
tiplication is significantly simplified. The circuit to
perform the operation is a single exclusiveOR gate,
which inverts the sign signal when the MSB of the

weight is one. The multiplication $‘j’(H~“‘) in (4)

and the multiplication of $%J$‘-‘) in (6) are realized
by logical-AND gates using stochastic multiplication.

4. Experiments

The proposed MNN is implemented on FPGAl and
experiments are conducted to verify the feasibility of
the proposed architecture. The weight value is ex-
pressed;n g-bit signed fixed-point format and the size
of register used in the DDFS is g-bit. The experiments
with-the stochastic weight multiplier and neuron are
also performed. The stochastic random weight mul-
tiplier uses the random pulse generator based on 8-
order LFSR and the random weight circuit takes g-bit
weights (the additional bit is a sign bit).

4.1. Neuron characteristics

First, the’characteristics of the activation function are
measured. The relation between HI, and f(&) of the
stochastic neuron and the voting neuron are depicted

‘XILINX, XC4013

560

l.O/(l+exp(-1.5*(x-0.5))) - --.

in Figures 5 and 6. The voting neuron used here does
not include the smoothing circuit. It is very clear that
the characteristic of the voting neuron is much better
than that of the stochastic neuron. The characteris-
tic of the proposed voting neuron has a very smooth,
sigmoid-like function, whose output variance is much
smaller than that of the stochastic neuron.

The second experiments measure the effect of the
smoothing circuit on the neuron’s non-linear func-
tion. The neuron characteristics are measured using
the same configuration as the previous experiments.
The experimental results with S = 8 and S = 24 are
depicted in Fig. 7. For the comparison, neuron char-
acteristics with the stochastic weight multiplier are
also tested. These figures show that the effect of the
smoothing circuit is more significant with the DDFS-
type synapse unit. Even though the DDFS weight val-
ues are restricted between -1.0 and 1.0, the flexibility
of design is greatly improved with this enhancement.

4.2. On-chip learning performance

The pulse differentiator employed to generate f’(Hk)
for the back-propagation algorithm finds the head and
the last of the pulse train and generates output pulses.
Using the neuron signal shown in Fig. 6 as the input,
the differentiator output is shown in Fig. 8, which is
very close to the derivative of the nonlinear character-
istic shown in Fig. 6.

The proposed MNN is trained to perform simple
binary logic functions. The MNN used for the ex-
periment has three neurons in the input layer, three
neurons in a hidden layer and a single output neuron.
The input and the hidden layer both include the off-
set neuron which always gives ‘1’ output so that the
weights connected to the offset neuron act as the offset
0. DDFS synapse unit is used for weighting the neu-
ron output. The parameter S used in the smoothing
circuit is eight. The whole MNN circuit and a trainer
unit is implemented on a single FPGA.

NETCK
10
11
12
T0
FK0
ERROR
SIGN
GC114)
DONE
FJ0
FJl
FJ2
---w--m

NETCK
10
11
12
TQ
FK0
ERROR
SIGN
G<1/4>
DONE
FJ0
FJl
FJ2

EM-00
EM,01
Bl-02
Bl-03
Bl-04
Bl,05
Bl-06
Bl-07
M-08
Bl-09
I?110
I3111
B112
B113 we se

Bl-00
Bl-01
Bl-02
M-03
Bl,04
Bl,05
Bl.06
Bl-07
M-08
Bl-09
Bl-l.0
B111
B112 ma l -

Figure 9: Signals in the MNN learning logic functions, (A) before learning, (B) after learning
(exclusiv*OR function) l

Signals in the experimental MNN during the learn-
ing are depicted in Fig. 9. In the figure, a simple logic
function (exclusiveOR) is used as the target function.
IO, 11 are the input signals, TO is the teaching signal,

and FKO is the output of the MNN (oc2) . As the fig-
ures show, the proposed MNN success PI ul y learned the
exclusive-OR function.

Next experiment is the problem of classifying points
inside and outside a shaped region [5]. The MNN used
in this experiment has two inputs and one output,
which given the X, y coordinates of a point within the
square region bounded by 0 < r: < 1 and-0 < y < 1,
is trained to recognize if the given point lies &side or
outside a particular shaped region. The network out-
put is zero if the point lies outside, one if it lies inside.
The network has three neurons in its input layer, and
a single hidden layer that contains five neurons. The
output layer has a single neuron. The third neuron
in the input layer and the fifth neuron in the hidden
layer are offset neurons to provide offset 8. The whole
network and the trainer unit takes two FPGAs. Us-
ing a training data set, the network learned to classify
the given coordinate (x, y) by itself using its on-chip
learning mechanism. The training data set consists of
128-data which is randomly selected from the origi-
nal data set (256 data) and after the learning, all 256
reference points are fed to the network to test the gen-
eralization capability. Fig. 10 shows the training sets
and the response of the MNN after 8192 iterations of
training. Output levels are represented by the diame-
ter of black circles, As the parameter S increases, the

output pattern becomes clear shape and with S = 24,
the output plot resembles very much the target shape
even though the training data is incomplete. Thus,
these experiments indicate that the proposed MNN
has very good generalization capability as well as the
on-chip learning mechanism is very functional.

5 . Conclusion

New digital architecture of the frequency-based MNN
with on-chip learning has been discussed. The pro
posed MNN architecture is implemented on FPGAs
and the various experiments are conducted to test the
performance of the system. First, the neuron char-
acteristics are measured by the experiments, and the
results show that the proposed MNN has a very good
nonlinear function owing to the voting circuit. The
learning behavior of the on-chip learning capability of
the MNN is also tested by experiments, which show
that the proposed MNN has good learning perfor-
mance and generalization capabilities.

References

[l] G. Moon, M. E. Zaghloul, and R. W. New-
comb, “VLSI Implementation of Synaptic Weight-
ing and Summing in pulse Coded Neural-Type
Cells,” IEEE ?i-ans. on Neural Networks, vol. 3,
no. 3, pp.394-403, May. 1992.

5.61

DDFS Synapse 0
I .O/(l+exp(-10*(x-.05))) -------

Random Synapse +
.O/(l+exp(-3.0*(x-.05)))

.

HK 0
co 08 co d3COOCOO

1 (A) L I 1 I 1 I I I I I
-4 -3 -2 -1 0 1 2 3 4 5

HK

Figure 8: The differentiator output.

I I I I I I I

DDFS Synapse
l.O/(l+exp(-40*x))
Random Synapse
l.O/(l+exp(-6*x))

I
I..............

I..............

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
HK

(B)

Figure 7:’ The nonlinear functions of the voting
neuron (A) S = 8, (B) S = 24.

. .

. .

. .

. .

. .

. .

. .

. .

_

. .

. .

. .

. .
l 0

. .

. .

. I I I , I I
[2] Y. C. Kim, M. A. Shanblatt, “Random noise effects

in pulsemode digital multilayer neural networks,”
IEEE Rans. on Neural Networlcs, Vol. 6, No. 1,
pp.220-229, January 1995.

[3] Leonardo M. Reyneri, “A performance analysis of
pulse stream neural and fuzzy computing systems,”
IEEE ltans. on CAS, Vol. 42, No. 10, pp.642-660,
Octover 1995.

[4] H. Hikawa, “Improvement on the learning perfor-
mance of multiplierless multilayer neural network,”
Proc. IEEE ISCAS’97, Vol. 1, pp.641-644, 1997.

[5] M. Marchesi, G. Orlandi, F. Piazza and A. Uncini,
“Fast neural networks without multipliers,” IEEE
Titans. on Neural Networks, Vo1.4, No. 1, Jan. 1993.

, ,........... I
(C)-S--W - ’

Figure IO: ‘Ikaining data and the response in
the classifying problem, (A) training data (128
pixels), (B) after the learning (S=24), (D) af-
ter the learning (S=l6), (F) after the learning
(S=8).

562

