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Premise
• By sound, we mean a mechanical phenomenon caused by a perturbation of a 

transmission medium (usually the air) that has characteristics such as to be perceived 
by the human ear. 

• The sound in a fluid is essentially characterized by a time-varying change in density 
associated with a time-varying change in the pressure, temperature and position of 
the fluid particles (thought as the infinitesimal volume of the fluid itself). 

• The generation of a sound is generally attributed to the vibration of solid objects and 
the sound itself is often referred to as “air vibration”. The words “sound” and 
“vibration” are, in fact, commonly connected to each other. In musical instruments, 
for example, some sound generators are vibrating strings as in piano, guitar, violin, 
etc; vibration of bars like in the xylophone, vibraphone; vibration of membranes as in 
drums and banjo; vibration columns of air in pipes as in pipe organ, brass, wood, etc.



Simple Oscillating System Simple oscillating system. 
a) Massspring-friction system. 
b) Circuit representation of vibrating system in one dimensions

m is the mass,

K is the elastic constant, 

R is the mechanical resistance coefficient that model the friction.



Simple Harmonic Motion

For R = 0





Damped Harmonic  Oscillating System
Solution for R > 0



Damped Harmonic  Oscillating System
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Simple Harmonic Motion
%--------------------------------------------------------------------------
%
%   Damped linear oscillator for various values of the time constant \tau
% 
% -------------------------------------------------------------------------
% A. Uncini, "Digital Audio and Acoustic Processing Fundamentals", DRAFT
%
%   Copyright 2020 - A. Uncini 
%   DIET Dpt - University of Rome 'La Sapienza' - Italy
%   $Revision: 1.0$  $Date: 2020/03/31$   
%--------------------------------------------------------------------------
clear all; close all;
rng(19);       % Set seed for random number generation
Ts = 1/1000;   % Sampling frequency
t = 0:Ts:1;
N = length(t);

w0   = 3.25*2*pi;
alfa = [0.0  2   4];

y0 = 1;
K = length(alfa);
kk=0;
for k=1:K

wd   = sqrt( w0^2 - alfa(k)^2 );
phi  = -atan( alfa(k)/wd );
kk=kk+2;
for i=1:N

y(kk-1,i) = exp(-alfa(k)*t(i)) * cos( wd*t(i) + phi );
y(kk,i)   = exp(-alfa(k)*t(i)) ;

end
end

%%%%%%%%%%%% Plot %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure;
LineWidth = 2;
hold on; grid on;  box on;
kk=0;
for k=0: K-1

kk=kk+2;
plot(t, y(kk-1,:), 'color',  [0.5+0.1*k   0.5-k*0.2  k*0.1 ] ,  

'LineWidth', LineWidth);
plot(t, y(kk ,:), '-.','color',  'k' ,  'LineWidth', 1.0);
plot(t, -y(kk ,:), '-.','color',  'k' ,  'LineWidth', 1.0);

end
title('Damped oscillatory response');
xlabel('{\itt} [s]'); ylabel('{\itx}(\it{\itt})');
% legend();

   



Damped Harmonic  Oscillating System



Damped Harmonic  Oscillating System



Forced Oscillating System



Forced Oscillating System

Resonant 
circuit TF



Forced Oscillating System



Forced Oscillating System



Forced Oscillating System



Generic Oscillating System



Analogy with Electrical Circuits



Analogy of Mobility
In the analogy of mobility, we have that the force f(t) is the flux 
quantity and velocity v(t) is the potential quantity. 
Thus let indicating the velocity as v(t) = x˙(t), the Eqn. of the 
oscillator can be written as



Analogy of Impedence
In the analogy of impedance we have that the force f(t), analogous 
to voltage, is the potential quantity, and velocity v(t) is the flux 
quantity. However, in this case we have the sum of three
potentials, so the equation is interpreted as the KVL of a mesh with 
three circuit elements in series as shown in Fig. 1.14.



Nonlinear Oscillating Systems
In fact, in many acoustic musical instruments, there are “acoustically interesting” timbres in the  
presence of nonlinearity in the excitation organs such as, for example, in the interaction of the 
bow with the violin string, in the hammer striking the piano string or in reed instruments
such as saxophone and clarinet and in many other cases



Nonlinear State Equations

State equation 

Output equation 

Stationary state equations 



Linear State Equations



2nd Order Nonlinear Oscillating Systems
Where K is nonlinear function. E.g.  K(x) = K1x + K2x2 + …

R is nonlinear function. E.g.  R(x) = R1x + R2x2 + …



State-plane
or
Phase-plane

Phase portrait 
and
Vector field



Van der Pol Nonlinear Oscillator

K = 1, m = 1
f(t) = 0 
R(x) = µ x(1 - x2)



Van der Pol Nonlinear Oscillator
% -----------------------
% Van der Pol Oscillator
% -----------------------
clear all; close all

% Define Van der Pol Oscillator function
f = @VanderPol;

TT = 'Van der Pol Oscillator';
tspan = [0 60];  % temporal range 
X_vectfield_range = [ -3: 0.25: 3 ]; 
Y_vectfield_range = [ -3: 0.25: 3 ]; 
nRun = 50;
% set Random i.c.
for n = 1 : nRun

x_ic(n,:) = 5 * (rand([2,1])- 0.5); 
end
% ---------------------
% Plot Phase Portratit
% ---------------------
subplot(1,2,2); 

vectfield(f,X_vectfield_range , Y_vectfield_range);
hold on; grid on; box on;
for n = 1 : nRun
x_ic'
[ts,ys] = ode45(f,  tspan , x_ic(n,:));
plot(ys(:,1),ys(:,2) , 'LineWidth',2);

end
title(sprintf('%s - Phase portrait', TT));

xlabel('{\itw}_1'); 
ylabel('{\itw}_2');

% ---------------------
subplot(1,2,1); hold on; grid on; box on;

for n = 1 : nRun
[ts,ys] = ode45(f,  tspan , x_ic(n,:));
plot(ts(1:50), ys(1:50,1),  'LineWidth',1);

end
grid on;
title(sprintf('%s - Time series',TT));
xlabel('t');
ylabel('{\itx}({\itt})')

% -------------------------------
function dXdt = VanderPol(t,X)

x = X(1);
y = X(2);
mu = 1; % 0, 1, 2, 5 10, 20, 50
dxdt = mu*(x-1/3*x^3-y);
dydt = x/mu;
dXdt = [dxdt; dydt];

end



Van der Pol Nonlinear Oscillator (ode45)
[ts,ys] = ode45(@VanderPol,  tspan , xic );

function dXdt = VanderPol(t,X)
x = X(1);
y = X(2);
mu = 1; % 0, 1, 2, 5 10, 20, 50
dxdt = mu*(x-1/3*x^3-y);
dydt = x/mu;
dXdt = [dxdt; dydt];

end

«Ode45» solve an Ordinary Differential Equation where «f» 
is the callback function externally defined (in state space
form), «tspan» the vector containing the tame-samples and 
«xic» the vector containing the initial conditions.

In Python we can use «scipy.integrate.ode()»   



Van der Pol Nonlinear Oscillator
50 Random Initial Conditions

nRun = 50;
% set Random i.c.
for n = 1 : nRun

x_ic(n,:) = 5 * (rand([2,1])- 0.5); 
end

            



Duffing Nonlinear Oscillator

f(t) = γsin(ωt) 
K(x) = K + bx2



Duffing Nonlinear Oscillator



Duffing Nonlinear Oscillator



Duffing Nonlinear Oscillator



Duffing Nonlinear Oscillators
% --------------------------------------
function dXdt = VanderPol(t,X)
x = X(1);
y = X(2);
mu = 1; % 0, 1, 2, 5 10, 20, 50
dxdt = mu*(x-1/3*x^3-y);
dydt = x/mu;
dXdt = [dxdt; dydt];
end

function y = pendulum(t, x)
w1 = x(1);  %i. c.
w2 = x(2);  
dw1 = w2;
dw2 = -sin(w1);
y = [dw1; dw2];

end

function dy = rigid(t,y)
dy = zeros(3,1);    % a column vector
dy(1) =  y(2) * y(3);
dy(2) = -y(1) * y(3);
dy(3) = -0.51 * y(1) * y(2);

end

function wdot = duff(t, w)
global K R b gamma omega; 

wdot(1) = w(2);
wdot(2) = -R*w(2) - K*w(1) - b*w(1)^3 + gamma*cos(omega*t);
wdot=wdot';

End

function dy = lorenz( t,y)
sigma = 10.0; %
rho= 28.0; %rho
beta = 8.0/3.0; %beta

dy(1,1) =  sigma*(y(2)-y(1));
dy(2,1) =  rho*y(1) - y(2) - y(1)*y(3) ;
dy(3,1) =  y(1)*y(2) - beta*y(3);

en



Lorentz
function dy = lorenz( t,y)

sigma = 10.0; %
rho= 28.0; %rho
beta = 8.0/3.0; %beta

dy(1,1) =  sigma*(y(2)-y(1));
dy(2,1) =  rho*y(1) - y(2) - y(1)*y(3) ;
dy(3,1) =  y(1)*y(2) - beta*y(3);

end

    



Continuous Vibrating Systems



Continuous Vibrating Systems

Model derived 
by the Newton’s 
low: F=ma



Solution of the String Wave Equation



Solution of the String Wave Equation



Wave Equation: Space and Time



Wave Equation Solution



Wave Equation Solution



Wave Equation Solution



Wave Equation Solution



Wave Equation Solution



Wave Equation Solution



Wave Equation Solution



Wave Equation Solution



Stationary Wave



https://www.youtube.com/watch?v=PVX4V5Adbzk



Strings Vibration and Musical Scales



Strings Vibration and 
Musical Scales



Strings 
Vibration 
and 
Musical
Scales



Strings 
Vibration 
and 
Musical 
Scales



Strings 
Vibration 
and 
Musical 
Scales



Vibrating rectangular membrane 



Vibrating circular membrane 





Sources separation - 3 Spline-Neurons
reverberating environment
(6x5x3.5) [m]     T60=200ms   Fs = 16kHz

 (0, 0, 0) 

1.0 [m]

(2.7,  2.0, 1.7) [m]

Room dimension ( , , ) (6.0,  5.0,  3.5) [m]x y z =

(5.0,  1.0, 1.4) [m]

2.5 [m]

(1.0,  2.0, 1.0) [m]

3 microphones

BSS
Algorithm

Speaker

Noise

Noise

Research area::
Machine Learning

for Signal Processing
(MLSP)

Indipendent Component 
Analysis (ICA)

Each microphone 
acquires all signals in 
the room.

Problem:
Saparate alla sources



Welcome aboard Neural Networks course

http://www.uncini.com/dida/NN/index.html

• For other informations
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