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Premise

* By sound, we mean a mechanical phenomenon caused by a perturbationofa
transmission medium (usually the air) that has characteristics such as to be perceived
by the human ear.

* The sound in a fluid is essentially characterized by a time-varying change in density
associated with a time-varying chqnfge in the pressure, temperature and position of
the fluid particles (thought as the infinitesimal volume of the fluid itself).

 The generation of a sound is generally attributed to the vibration of solid objects and
the sound itself is often referred to as “air vibration”. The words “sound” and
“vibration” are, in fact, commonly connected to each other. In musical instruments,
for example, some sound generators are vibrating strings as in piano, guitar, violin,
etc; vibration of bars like in the xylophone, vibraphone; vibration of membranes as in
drums and banjo; vibration columns of air in pipes as in pipe organ, brass, wood, etc.



Simple Oscillating System  simple oscillating system.

a) Massspring-friction system.
b) Circuit representation of vibrating system in one dimensions

Spri Mass m is the mass,
pPring / Friction |
),t MNcton 10SsSes
/ K is the elastic constant,
T T T T TTy

R is the mechanical resistance coefficient that model the friction.

If the system is stressed with a force, indicated as F}., it is obtained a displacement
x(t) proportionally to it. Modeling the motion in one dimension, can be obtained by

considering the balance between forces due to Newton’s second law. That is
M| Displacement > Fp=m-it) (1.1)
I Tk k
i / position
a2 )
_I - where the quantity #(t) = o ajé“ — a(t), represents the acceleration'. In this case, the
: X ( r)r forces involved in the equilibrium of the above dynamic system are: the force of the
spring proportional to the displacement F; = —Ku(t); and the friction proportional
to the speed of motion Fy = —Ri(t). The equation of motion can be determined by

replacing in Eqn. (1.1) the constitutive relations of the spring and of the damper
obtaining the homogeneous linear ordinary differential equation (ODE) of the type

mi(t) + Ri(t)+ Kx = 0. (1.2)



Simple Harmonic Motion

R
ForR=0
11—

Definition 1.1. A simple harmonic motion is a special type of periodic motion or os-
m D|5p| acement cillation motion where the restoring force is directly proportional to the displacement
T " and acts in the direction opposite to that of displacement.
; / position
» : . In this case there is a simple harmonic motion characterized by the following homo-

geneous differential equation

>
4 1
T(f} mi(t) + Kx(t) = 0. (1.3)

Definition 1.2. The constant wg = /K /m is defiend as resonance pulsation, or sim- The constant wp represents the natural pulsation or resonance pulsation of the
Qarlv th £ s defiend f 1 \F system. The natural frequency fg ot the oscillating system is therefore equal to
larly the resonarlnce ireguency 1s dellenda as = 5= —5

Y 1 y 0= 2y m fo=(1/2n) /K /m. The amplitude A of the oscillation is equal to A = /A3 + A3,
So, the Eqn. (1.3) can be rewritten as and the phase equal to ¢ = tan™" (45/4;).

#(t) +wiz(t) =0 (1.4)

1.2.1.1 Velocity and Acceleration

which represents the differential equation of simple harmonic motion. Thus, according Differentiating the Eqn. (1.6) with respect to time, we obtain the velocity v(t)
with Definiton 1.1, from the theory of differential equations, the Eqn. (1.4) admits a

solution z(t) of the type v(t) = &(t) = —woAsin (wot +¢) (1.7)

by differentiating again, we obtain the acceleration a(t)

z(t) = Aq coswot + Agsinwyt (1.5)
‘ a(t) = #(t) = —wg A cos (wot + @) (1.8)
where A1 and Ao are two arbitrary constants to be determined based on the value of
the initial conditions (i.c.) 2(0) and #(0) of Eqn. (1.4). In addition, observe that the drawn in Fig. 1.2. Note that the velocity is out of phase by /2 radians and the
solution in Eqn. (1.5) is very often written as acceleration of 7 radians.
From Eqn.s (1.7) and (1.8), note that: 1) at the same amplitude A, velocity and
3,(f) — Acos (wgt—kc‘f)). (1,6) acceleration are greater as the frequency is higher; 2) z(¢) and a(t) are in phase

opposition, while v(t) is in quadrature with them.



1.2.1.2 Potential and Kinetic Energy

Due to the phase shift between z(t) and v(t), the kinetic energy E} of the system is
maximum when the potential energy E, is zero (and vice versa)

Q

1 x
E, = —mv?, Ey = [ Kxdz.
Jo

The internal energy of the system is given for each ¢ by the sum Ej + E,, that is

1

* 1 1
E= §m1)2+ [ Kxdx = EmwQ cos?(wt + @) + EKAQLLP sin?(wt + @)
40

. - RALTIE L 4 where K = mw?; so, we have that
A(O) ............... . H \
- (& il ) Qr=9) | 1 1
N D
— @ a e E=E,+E;= EKAQ = EmngQ = §mU2 (1.9)

where U represents the maximum speed. In a loss-free system, the energy is constant

and is equal to the maximum potential energy (at maximum deviation) or maximum
kinetic energy (at the central point).

Moreover, to characterize the oscillator motions we often refer to the effective
quantities or root mean squares (RMS), denoted as x.g or xgyrg, defined as the
following scalar quantity

1 T
prm— 1 2
TRMS Thm \/T./o |z(t)|2dt (1.10)

and for a periodic signal is equal to the RMS of one period of the signal. Thus
for sinusoidal quantity we have that zrys = A/v/2 where is the amplitude of the
oscillation.

Remark 1.1. In physical modeling, the mass m and the spring K are considered as
concentrated in single point. The model is denoted as: lumped parameters model that,
under certain assumptions, approximate the behaviour of the distributed system. It
is useful in electrical, mechanical, acoustics, ..., systems. In particular the mass m

can be considered as an elementary sound source, which transmits the motion to the
particles of the medium in which it is in contact.



Damped Harmonic Oscillating System

SolutionforR >0

In the case of real system, drag loss are no longer negligible (R > 0). The differen-
tial equation (1.2), considering the substitutions o = R/2m and w3 = K /m, can be
rewritten as

i(t) + 2ad:(t) +wiz(t) = 0. (1.11)

72 4 20y +wd = 0 (1.12)

where the variable v is defined as a complex frequency. The roots y1 and ya of (1.12)
are computed as

Y12=—at /a2 —w=—atj\/wi—a?=—atjwy (1.13)

where wg = \/wd — a2, represents the natural pulsation of the damped oscillation

(which, due to due to the presence of friction, is lower than the non-damped resonance
pulsation wg = /K /m). The solutions (1.13) can be: 1) real and distinct; 2) conjugate
complexes, and 3) real coincident. For each of these cases there will be a solution that
characterizes a certain physical behavior.

N - A1 +As =2(0)
z(t) = Are™ + Aote 11 A1 +71 A2 = 2(0).
Ay =z(0)

yAL + Ag = #(0) so, from the Euler formula, it is worth that

z(t) = Ae™* cos (wqt + ¢)

3

m

Displacement

I(t) = |A1 | eque(_cx+jwd)t 4 |A1|e—jd)€(—a_jwd)t
= |Ajle ™ (ej(‘“dH‘-") 4+ e—j(wdt+¢>))

./ position
/ >

x(7)



Damped Harmonic Oscillating System

1.2.2.4 Time Constant 7

An important measure of damping is the time needed for the amplitude to attenuate
by a factor equal to 1/e (for which e=** = ¢~1), This time, denoted as 7, is called
in various ways according to the application fields: time constant, decay constant, life
time, characteristic time; so, for the Eqn. (1.20), we have that

X(t) = Ae ™ cos(w,t + @)

AN : / position
!

1 2m ' ' '
T =— = —
8 R
+ o . . —4t
and in the following, 7 will be called a time constant. e
4 R
——
y m :
7 K Displacement
/
/
/)
/
/

"y

0.2t




Simple Harmonic Motion

e L e T T %626%%6%626%%%6%6%6% PLOY  %6%%%6%6%%36%6%%.636%6 %6626 %7666 % 76.66%6 %7666 %7666 6767666 %7666 67666 6767666 %6766
% figure;

% Damped linear oscillator for various values of the time constant \tau LineWidth = 2;

% hold on; grid on; box on;

A e e e EE T kk=0;

% A. Uncini, "Digital Audio and Acoustic Processing Fundamentals", DRAFT k=0: K-1

% kk=kk+2;

%  Copyright 2020 - A. Uncini plot(t, y(kk-1,:), ‘color', [@.5+0.1*k ©.5-k*0.2 k*0.1 ] ,
% DIET Dpt - University of Rome 'La Sapienza' - Italy 'LineWidth', LineWidth);

%  $Revision: 1.0$ $Date: 2020/03/31% plot(t, y(kk ,:), "-.",'color', ‘'k' , 'LineWidth', 1.0);

Jom = == mm e e e e e e e e e e e e e e e e e e e e e e e e m - plot(t, -y(kk ,:), '-.",'color', 'k' , ‘'LineWidth', 1.0);

clear all; close all;

rng(19); % Set seed for random number generation title('Damped oscillatory response');
Ts = 1/1000; % Sampling frequency xlabel('{\itt} [s]"); ylabel('{\itx}(\it{\itt})");
t = 0:Ts:1; % legend();
N = length(t);
WO = 3.25%2%pi; T
alfa = [6.06 2 4];
yo = 1;
K = length(alfa);
kk=0;
k=1:K
wd = sqrt( wo~2 - alfa(k)"2 );
phi = -atan( alfa(k)/wd );
kk=kk+2;
i=1:N
y(kk-1,i) = exp(-alfa(k)*t(i)) * cos( wd*t(i) + phi );

y(kk,1)

exp(-alfa(k)*t(i)) ;




Damped Harmonic Oscillating System

1.2.2.5 Quality Factor Q and Damping Ratio (

Very often to characterize the behavior of a damped oscillator, we used the quality
factor @, or factor @), defined as the ratio between the spring force Kxz¢ and the
damping force Rwozo
KQZO K wo
Q_ Rono - Rwo N 20;"
This seems to be due, in addition to historical and customary reasons, to the fact
that the Q-factor allows an immediate definition in the frequency domain. In fact, for
resonant circuits, as we will see later on (Eqn. (1.42)), it is worth Q = Af/f

(1.24)

Remark 1.3. However, it is useful to note that in other areas, such as automatic
controls, instead of the @Q-factor is more common the use of the damping ratio (
defined as _

e (1.25)

m

Displacement

./ position
= / .

x(7)



Damped Harmonic Oscillating System

1.2.3 Phasor Related to Quantities r, v and a

By phasor or complex amplitude associated with the sinusoidal quantity z(t) =
X cos(wt+ ¢), we mean a complex number, indicated as X, such that

x(t) =Re [Xej“t] :

So, the phasor X is then defined as

X = Xel?

(1.26)

therefore in the phasor is contained only information on the amplitude and phase,
and not the information on the pulsation. In addition, the quantity

z(t) = Xe*t o

takes the name of rotating vector or complex displacement associated with the quantity
x(t) = X cos(wt+ ¢). The rotating vector z(t) is typically written as z (i.e. implying
the time index (t)).

X T Phasor plane

X \“’0
Fig. 1.4 Quantities of the L4 >

linear oscillator described Re
as rotating vectors in the ot X

plane of the phasors.

2(t) = Re [2(t)] (1.27)

Therefore, the velocity and the complex acceleration can be, respectively, written
as

D = jwoXelt = juoT (1.28)

and _
a=—wiXel¥ot = 2% (1.29)

Graphically thse vectors can represent the “motion” indicated in Fig. 1.4 in the phasor
plane.So, we observe that velocity v increases with frequency, while acceleration a with
its square.



Forced Oscillating System

mi(t)+ Ri(t) + Kx(t) = f(t)

1.3.1 Transfer Function and Frequency Response

A linear system can be represented by the Laplace Transform (or L-transform). So,
considering the L-transform of Eqn. (1.30) we can write?
ms?X (s)+ RsX (s)+ KX (s) =

F(s). (1.31)

The transfer function (TF), defined as the ratio between the L-transform of the output

variable and the L-transform of the driving variable, can be written as

X (s) 1/K
H(s) = = . 1.32
T F ) T Far -
1/K G
H(s)= — Lt —
I+ s+ s 1+ Q+
G G
h(t)= L1 . 5| = —e *sin(wgt), wg=woy/1—(1/2Q)2.
1+ 5otz =1
0

where for high Q values, we have that wg =~ wo.
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Forced Oscillating System

Resonant
circuit TF

RO @]

1.3.1.1 Force vs Velocity Transfer Function

Finally, as seen previously, the mechanical system can be characterized by “through”
and “at-the-end” quantities, i.e. force and velocity. Indicating with V(s) = sX(s) the
L-transform of the velocity, the transfer function between velocity and force becomes

Vi(s)

B =F =

s(1/K) (1.35)
1+%5+%52' '

Remark 1.4. Note that the TF in Eqn. (1.35), has a zero in the origin and two poles
in the denominator and, as we will see also in in §1.4.2, it is the typical one of the so
called resonant circuit.

o &

10 100 10"
Frequency

100
Frequency

Af‘_




Forced Oscillating System

1.3.1.2 Bandwidth at —3dB

Considering the resonance TF in Eqn. (1.35) for Q2 = /K/m, Q = K/ R, and for
s = j2, to better study its frequency response,it is more convenient to express the TF
(1.35) as
1
: Q_ )

Considering the amplitude response for f = (/27 it is easy to verify that

H(j%) =

H(f)| = : (1.36)

f 2
\/ 1+@2(£- %)
where the (Q-factor, as is known, provides a direct measurement of the bell-shape
frequency response. The term fj represents the maximum frequency of the bell and
is also called resonance frequency.
By definition, the bandwidth at —3 dB (see Fig. 1.8) corresponds to the frequencies
for which the TF module is equal to 1/+/2, which corresponds to half power. These

frequencies, defined as cutoff frequencies, can be easily calculated by imposing this
value on the module; i.e.we get

! _ L (1.37)

(k-4

resolving with respect to f, the filter cutoff frequency values can be determined as

fi = 2‘% (v’ 1+402— 1) 2 low-cut frequency (1.38)

DRAFT March 2020

fa= ;—5 (\f 1446072+ 1) 2 high-cut frequency. (1.39)

From the previous expressions it is easy to verify that the f; corresponds to the
geometric mean of the cutoff frequencies

fo=+/f1fe 2 resonance frequency. (1.40)

Combining the expressions (1.38) and (1.39) we have that

fo
fe—h==—= 1.41
0 (1.41)
50, it is nsual to define the value of the Q-factor as
fo
= 1.42
Q=2 (1.42)

where, for Eqn. (1.37), the quantity Af = fo — f1 is defined filter bandwidth at —3
dB4.

& b O

) [0
L]

;o ra

Fig. 1.8 Frequency and
phase response of a reso- i
nant oscillator (or circuit)
for different values of the
()-factor.

Remark 1.5. Note that the definition of @ in (1.42) does not depend on the com-
ponents of the oscillator (K, R), so its use is much more convenient as, for example,
in defining the design specifications for analogue or digital filters used in the audio
sector.



Forced Oscillating System

1.3.2 Transient and Steady-State Response

Consider the oscillating system modeled with Eqn. (1.30) excited by an external force
with a sinusoidal waveform of the type

f(t) =Fcos(wt+¢), for t=>0. (1.43)

In the case of zero initial conditions, it is known from the theory of differential equa-
tions that the solution of the Eqn. (1.30) can be expressed as the sum of two parts

() =m() +ap(t) & X(s)=Xe(s)+ Xp(s). (1.44)

The part z;(t) is called the transitory response of the system that runs out for; while
zp(t) is called a permanent response or a steady-state response that predominates
over time.

To obtain the solution of a sinusoidal steady-state, it is better to write the solution
in the Laplace domain as

X(s)=H(s)F(s). (1.45)

So, the X (s) can be characterized by a pair of complex conjugate poles deriving from
the sinusoidal excitation function (1.43). Developing in partial fractions the X (s),
there is a development of the type

X(s]:Xt(s)+3_R R*

— +— (1.46)
Jw s+ jw

where the part X;(s) is the transitory one as it relates to the poles of H(s) which,
due to the stability condition, will have a real part less than zero. It therefore appears
that the steady-state response is sinusoidal and can be written as

R R*

Q=
a’p( ) L—jw—l—s—l—jw

] = Aj cos(wt + @), t>0. (1.47)

1.3.3 Sinusoidal Steady-state Response and I'mpedance

To obtain the only sinusoidal steady-state response, we can proceed by writing the
equation of motion in the phasor domain as

F F/m

— 1.48
K—w?m+jwR  wl—w?+jw2a (148)

X = H(s)) oy, F =

where w? = K /m and a = R/2m. Recalling the link between the phasor of a sinusoidal
quantity and the phasor of its derivative with respect to time®, it results V = jwX

JjwF/m wF /m

V=X= = :
wg —w?+jw2a  w2a—j (w?—w})

(1.49)

The mechanical impedance Z in the phasor-domain, defined as the ratio between the
force and the velocity phasors, is therefore defined as

F
Z:v:R—l—j(wm—K/w):R+ij

where X,,, =wm — K /w represents mechanical reactance.

(1.50)

A
z Y

a)

Fig. 1.9 Real and imaginary parts of the mechanical impedance and admittance of the har-
monic oscillator: a) mechanical impedance; b) mechanical admittance or mobility; ¢) parametric
frequency representation of the imaginary part as a function of the real part of the admittance
(Nyquist diagram).

The steady-state displacement law, according to Eqn. (1.47), can be expressed as
a function of the mechanical impedance such as

z(t) = Re [‘Lejwt} = iZ sin(wt + ¢) (1.51)

Jw,

where Z is the module of the complex impedance.



Forced Oscillating System

1.3.4 Calculation of Complete Response

In order to obtain the complete transient and steady-state response, the Eqn. (1.46)

should be explicitly calculated. In these cases it can be shown that the displacement

takes the form

x(t) = Ae™ cos(wat + @)+

w/

sin(wt + ¢), t>0 (1.52)

where the arbitrary constants A and ¢ depend on the system initial conditions.

Fig. 1.10 Complete re-
sponse of a simple oscil-
lator with @ = 10 for a
co-sinusoidal external force
f(t) = cos(wt) applied for
t > 0. The ratio w/wo
varies between 0.1 and 4.
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Generic Oscillating System

1.4.1 Helmholtz Resonator

The Helmholtz resonator consists of a volume of confined air V' accessible through a
cylinder called “neck”, as shown in Fig. 1.11-b). With respect to the previous case, in
a cylinder the mass of the piston is replaced by the mass of air in the neck. The mass

m is equal to

m = pSL
while the constant K can be defined as
S22
k="
%4

where p is the density of the air and ¢ the speed of sound.

Fig. 1.11 Simple vibrat- L
ing systems. a) Piston in

a cylinder. b) Helmholtz

resonator; ¢) Helmholtz

resonator without “neck”

(as the “cajon” box-shaped

percussion instrument). d) <)
Pendulum. (Modified from e

V /,‘ : \“.

Equivalent

[4]).

b)

According to Definition 1.2, the natural frequency of the system is equal to

1 /K ¢ | S S
fo= 52V =V VI (1.56)

Fig. 1.11-¢) shows the “neckless” variant of the Helmholtz oscillator where the confined
cavity is accessible from a hole with radius r. In this case the oscillating mass m can
be calculated by means of the “equivalent neck™ which has a length equal to

oar =18, (1.57)

3

for which the mass m is

) . 16 .
m= pSL p(m"))(_ )25.33,03"3. (1.58)

(1.59)

Moreover, note that in case the surface around the hole is not wide. the natural
frequency is lower than the calculated one.



Analogy with Electrical Circuits

1.4.2.1 Kirchhoff Laws

In circuit analysis with lumped-element model or lumped-parameters model [1], are
characterized by two electrical (or acoustical or mechanical or electromagnetic ...),
quantities with the following properties:

1. one of type denoted as “through™ or “flux”, ¢(t);
2. one of type denoted as “at-the-ends” or “potential”, £(?)
3. such that their product is the instantaneous power: p(t) = ¢(t)&(t).

The notation “through” or “flux”, and “at-the-ends” or “potential”, refers to the
definition of the constitutive relationships® of a given element and are interchangeable.

Flg 1.12 Ele(:?tric bipole ’_@_l: i(f): electric current (quantity "through")
with the co%)rdmate verses v(¢): voltage (quantity "at the ends")
of currents i(t) and voltage  + (D) - e

v(t) signs.

Kirchhoff’s first law, or Kirchhoff’s current law (KCL), states that: The current

flowing into a closed surface (or a node) is equal to current flowing out of it. That is

> ik(t)=0. (1.61)

L.

The second law of Kirchhoff, or Kirchhoff’s voltage law (KVL), states that: For a
closed loop series path the algebraic sum of all the voltages around any closed loop in
a circuit is equal to zero. That is

> u(t)=0. (1.62)

ke

Property 1.3. Power Conservation Principle - The basic consequence of Kirchhoff’s
topological laws is the law of conservation of power. Given a circuit with R branches

we have that
jid

P(t) =" vr(t)in(?). (1.63)

k=1

The fundamental basis for the circuit representation also of non-electric structures
is based on the definition of variables of the flow and potential type such that the

v (ZL) topological laws of Kirchhoff, and consequently the law of conservation of power (1.63),
v (1‘) — R@(f) \ = g(f) — ? Resistor R are valid. As a consequence it is possible to define, in the domain of interest, the circuit
.- components, analogous to the resistor, capacitor and inductor.
1 dul(t However, the choice of the mechanical variables in analogy to the electrical variables
y U\l y 3

'U(t) = F %(f)dt <~ ’L(l‘) =C It Condenser C is not univocal and there are two widely used analogies: the analogy of mobility and

g the analogy of impedance.
di(t | 1 R
U( t) — ( ) ., = - ( t) _ . ( IL) dt TFicckssn L. The analogy of mo sility, is an indirect analogy where the force is analogous to
dt L current and velocity to the voltage.

e The analogy of impedance, is a direct analogy where the force is analogous to
voltage and current to the velocity.



Analogy of Mobility

In the analogy of mobility, we have that the force f(t) is the flux
guantity and velocity v(t) is the potential quantity.

Thus let indicating the velocity as v(t) = x'(t), the Eqgn. of the
oscillator can be written as

mo(t)+ Rv(t) + K / (t)dt = f(t).

v(t) = /f (t)dt, Mass C=m
m

o(t) =R (1), Damper R.=R'
If (t
v(t) = I”_lf'f( ), Spring L= KL
dt
- . f(t) = i(t)
Force Ifm ;f;_ Iz N VK 5L
(@) 9] 7y — K_IE R V(1) m—C
_ /R >R,
. 1 ° V() = u(r)

>
x(7)

Fig. 1.13 Analogy of mo-
bility. Equivalent electrical
circuit (parallel resonant
circuit) of the mechanical
oscillator of Fig. 1.5.



In the analogy of impedance we have that the force f(t), analogous
to voltage, is the potential quantity, and velocity v(t) is the flux

Analogy of Impedence

guantity. However, in this case we have the sum of three

potentials, so the equation is interpreted as the KVL of a mesh with

three circuit elements in series as shown in Fig. 1.14.

f(f)

mv(t)+ Ru(t)+ K /-t:(tjdt = f(t).

1 | - - -
f(t) = K v(t)dt Spring =K !
v,
f(t) = Ro(t), Damper R.=R
duo(t
flt) =m o(t) Mass L =m.
dt
V() ﬁ ) _”,.i? - N £(6) > ult)
Velomty /K —C
m—> L
R— R,
v(t) —i(1)

(t) = Ri(t), &
v(t) = %/i(l‘.)fﬁ &
i di(t)
v(t) —LT,

()

Fig. 1.14 Analogy of

impedence. Equivalent

electrical circuit (series
resonant circuit) of the
mechanical oscillator of
Fig. 1.5.




Nonlinear Oscillating Systems

In fact, in many acoustic musical instruments, there are “acoustically interesting” timbres in the
presence of nonlinearity in the excitation organs such as, for example, in the interaction of the
bow with the violin string, in the hammer striking the piano string or in reed instruments
such as saxophone and clarinet and in many other cases

In general terms, a nonlinear dynamical system is a system such that the superposition
principle is no longer valid a and that can be described by a nth-order nonlinear
ordinary differential equation (ODE). Let wu(t), x(t) be, respectively, the external
forcing, the output signal a general form of a nonlinear dynamical system can be
written as

g(t.x(t),i(t),2(t),...) = Flt,ut), u(t),i(t),...) (1.72)

where f(-) and g(-) represent the system structure.

For the study of equation (1.72), we proceed to the reduction of the ordinary
nth-order ODE as a system of n 1lst-order differential equations. This technique, is
based on the introduction of a new quantity called the state variable (w(t), w(t) , ...).
that allows to greatly simplify some types of problems, avoiding the introduction of
complex forms of ODE solution.



Nonlinear State Equations

Example 1.1. For example, consider a system (without external forcing u(t) = 0)
described by the following 3rd-order ODE

= f(t,w, &, T)

with a simple change of variables, placing w| = x, wo =& and w3 = &, you can replace
the above 3rd-order ODE with a 1st-order system of ODEs. That is
w) = w9
Wy = w3y (1.73)
sy = f(ty,wy,wa,wsy).
It is easy to see that the 3rd-order ODE and the 1st-order system’s ODEs are equiv-

alent in the sense that, if x(¢) is a solution of the 3rd-order ODE, then w,(t) = x(t),
wo(t) = i&(t) and ws(t) = &(t) are the solutions of the system of ODEs.

. w = f(f.w.u). State equation

wy = fi(t,wy,...,wnp,up,. .. up) (t, w,u) .

wy = fa(t,wi,. . wn,uy, . up) y = h(t,w,u). output equation
Stationary state equations

Wy, = fo(t,wy,...;wp,up, ... up) w =f(w.u)

y = h(Wll)



Linear State Equations

Finally, observe that in the case of linear and time-invariant system, the state-space
representation can be written as

w = Aw -+ Bu

1.78
y = Cw+ Du (1.78)

where A € R™*" B e R"XP, C € R9"™ and D € R9*P are the matrices that charac-
terize the linear system.

In particolar, in the discrete-time domain is defined by the following system of
equations

wn+1] = Aw[n| + Bx[n] (A31)
y[n] = Cwn] + Dz[n]

in which the vector w € RM*1 represents the internal state of the system and the
matrices A, B, C and the scalar D are determinable, as in illustrated below, according
to the parameters of the circuit. The signal flow graph (SFG) of the state space form
is illustrated in Fig. A.6.

Fig. A.6 State space rep-
resentation of the single-
input-single-output (SISO)

] win+1] |V Mn]  discrete-time system de-
- ' @ " - - scribed by the finite differ-

ence equation (A.13). The
block z~! implements an
A M-length array of single

delayv.

A4
o]




2nd Order Nonlinear Oscillating Systems

Where K is nonlinear function. E.g. K(x) = K;x + K;x2+ ...

mi(t)+ Ri(t)+ Kx(t) = f (x,d,1)

R is nonlinear function. E.g. R(X) = Rx + R,x2+ ...

1.5.3 Undamped Pendulum

Fig. 1.15 Dynamic of
simple pendulum. Time
domain evolution of the
position x(t) and the ve-

As the first example of a nonlinear oscillator. let’s consider the simple undamped
nonlinear planar pendulum. Let’s # be the angle of the pendulum respect to the vertical
axes of rest position (see Fig. 1.11), using Lagrangian mechanics the dynamics of a

pendulum under the influence of gravity, the motion of a pendulum can be described I?Cf'flt}' “'T(t')f starting from
by the dimensionless nonlinear equation € = sin(@). different L.c.
u‘l - _.1[12 o Pendulum - Time series i.c. [0 0.50] 5 Pendulum - Time series .. [0 1.95] 5 Pendulum - Time series ic. [0 2.0]
r=sin(zr). == r\ z
® & 10
wo = —sin(wy). -~ )
= [i} = 0 = 5
0.2 A
0
0.4 J 27
0.6 s . - 3 " . 5 A L A
Li] 10 a0 30 40 4] 10 20 i 40 (4] 10 20 30




The locus in the w-ws plane, that is the solution for all w(t) for all t > 0, represents
State‘ p | ane . trajectory or orbit of (1.81) denoted as state-plane or phase-plane. In general these
or curves can be written in vector form as

w=f(w)

Phase-plane

where f(w) is the vector [fi(w) fa(w)], that we can considered as a vector field on
the state plane, which means that to each point w in the plane, we assign a vector
f(w). Thus, repeating this at every point in a grid covering the plane we obtain the
vector field diagram. For example, in Fig. 1.16 is represented the vector field diagram
for the pendulum Eqn. (1.81) for a grid wy,ws € [—7, 7] with a step fixed equal to
0.5. Note that, overlapped to the vector field are reported the state trajectory (qt the

steady-state) for three specific i.c. Pendulum - Phase porri

P E— - T

Pendulum . Vector Field & Phase portrait

P h dsSe po rtrait Fig. 1.16 Vector field of i - T :’_*"* —

—- %,0a7I0. 195 s

the pendulum Eqn.(1.81) S — |0 20 |
and for a grid wy,ws € [—7: ey e ~ -

Vector field 0.5 : 7). Moreover, are re-

o

ported two state trajectory . R p 4 2 o 2 s ” p
for three specific i.c., which Fig. 1.17 Dynamic of "
values are reported in the ab . simple pendulum. Phase

. . — N . . portrait for several i.c.
figure legendj 1de11t1t;a1 ?:o s —— T from z(0) = =27 and
that of the time series in N v(0) € [—7 «]; and from
Fig. 1.15. B R 1 : ; z(0)=0and v(0) € [—m, 7],

2 etc. Note that the wq-axis

(that is the @ angle of pen-
dulum), wraps onto itself
after every 27 radians.



Van der Pol Nonlinear Oscillator
mi(t)+ Ri(t)+ Kx(t) = f (x,1,t)

l K=1,m=1

i(t) = 0
P—p(l—a?)i+x=0  RE=ux1-x)

<

wo = —wy + p(l— u:f)wz

W = w9

Fig. 1.18 Dynamic of the
Van der Pol oscillator for
i.c. z(0) =1 and z(0) =0
and for different values of
the parameter indicating
the nonlinearity p = [0.5 5
10].

Van der Pol - Time series yx=0.5
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Van der Pol Nonlinear Oscillator

% mmmmmmm e e % =mmmmmmmmmmmmmmmemmon

% Van der Pol Oscillator subplot(1,2,1); hold on; grid on; box on;
A n=1: nRun

clear all; close all [ts,ys] = ode45(f, tspan , x_ic(n,:));

plot(ts(1:50), ys(1:50,1), 'LineWidth',1);

% Define Van der Pol Oscillator function

rid ;
f = @VanderPol; grd on;

title(sprintf('%s - Time series',TT));
' . ' xlabel('t");
TT = 'Van der Pol Oscillator’'; ylabel (' {\itx}({\itt})")

tspan = [0 60]; % temporal range
X_vectfield_range = [ -3: 0.25: 3 ];
Y_vectfield_range = [ -3: 0.25: 3 ];

nRun = 50; B mmmmmmmm oo
% set Random i.c. dXdt = VanderPol(t,X)
n=1: nRun X = ;E;;i
x_ic(n,:) = 5 * (rand([2,1])- ©.5); %u‘_ 1 e 1 9 510 0. 5o
= y /0 ] ] ] 3 3
% dxdt = mu*(x-1/3*x"3-y);
T dydt = x/mu;
% Plot Phase Portratit dXdt = [dxdt; dydt];
Y e ——a
subplot(1,2,2);

vectfield(f,X_vectfield_range , Y_vectfield_range);
hold on; grid on; box on;
n =1 : nRun
x_ic'
[ts,ys] = oded45(f, tspan , x_ic(n,:));
plot(ys(:,1),ys(:,2) , 'LineWidth',2);

title(sprintf('%s - Phase portrait', TT));

xlabel( ' {\itw}_1");
ylabel('{\itw}_2');



Van der Pol Nonlinear Oscillator (ode45

[ts,ys] = oded>(@VanderPol, ‘tspan , xic ); «Ode45» solve an Ordinary Differential Equation where «f»

dXdt = VanderPoL(£,X) iIs the callback function externally defined (in state space
X = X(1); form), «tspan» the vector containing the tame-samples and

mu=1; %0, 1,2, 5 10, 20, 50 «Xic» the vector containing the initial conditions.
dxdt = mu*(x-1/3*x"3-y);

dydt = x/mu;

[dxdt; dydt];

Q
x
Q
+
]

In Python we can use «scipy.integrate.ode()»

ode4d5 MATLAB: [t,y]=oded45(@vdpl,[© 20],[2 @]);
Solve nonstiff differential equations — medium order method Python: impor‘t numpy as np
def wvdpl(t,y):
Syntax dydt= np.array([y[1], (1-y[e]**2)*y[1]-y[e]])
return dydt
import scipy integrate
l=scipy.integrate.ode(vdpl([©,20],[2,8])).set_integrator("dopris")

[t,y] = ode45(odefun,tspan,ye)

[t,y] = ode45(odefun,tspan,y®,options)
[t,y,te,ye,ie] = ode45(odefun,tspan,y®@,options)
sol = oded45( )

Description
[t.,v] = oded45(odefun,tspan,y@), where tspan = [t@ tf], integrates the system of differential equations y" = f(r, y) from te to tf with initial conditions y@. Each row in the solution array y corresponds to a value returned in column vector t.

All MATLAB® ODE solvers can solve systems of equations of the form y' = f(r, v), or problems that involve a mass matrix, M (z, y)y' = f(t,y). The solvers all use similar syntaxes. The ode23s solver only can solve problems with a mass matrix if the mass matrix is
constant. ode15s and ode23t can solve problems with a mass matrix that is singular, known as differential-algebraic equations (DAEs). Specify the mass matrix using the Mass option of odeset.

oded5 is a versatile ODE solver and is the first solver you should try for most problems. However, if the problem is stiff or requires high accuracy, then there are other ODE solvers that might be better suited to the problem. See Choose an ODE Solver for more information.

[t,y] = oded5(odefun,tspan,y®,options) also uses the integration settings defined by options, which is an argument created using the odeset function. For example, use the AbsTol and RelTol options to specify absolute and relative error tolerances, or the Mass
option to provide a mass matrix.

[t,y,te,ye,ie] = oded5(odefun,tspan,y®,options) additionally finds where functions of (t,y), called event functions, are zero. In the output, te is the time of the event, ye is the solution at the time of the event, and ie is the index of the triggered event.

For each event function, specify whether the integration is to terminate at a zero and whether the direction of the zero crossing matters. Do this by setting the 'Events' property to a function, such as myEventFcn or @myEventFcn, and creating a corresponding function:
[value,isterminal,direction] = myEventFcn(t,y). For more information, see ODE Event Location.

sol = oded45( ___ ) returns a structure that you can use with deval to evaluate the solution at any point on the interval [t@ tf]. You can use any of the input argument combinations in previous syntaxes.

collag



Van der Pol Nonlinear Oscillator

% set Random i.c.
n =1 : nRun
x_ic(n,:) = 5 * (rand([2,1])- ©.5);

50 Random Initial Conditions




Duffing Nonlinear Oscillator
mi(t)+ Ri(t)+ Kx(t) = f (x,1,t)

l f(t) = ysin(wt)
K(x) = K + bx?

mi + Ri: + K + bx”® = ycos(wt)

For K >0 (see Fig. 1.19), the Duffing oscillator can be interpreted as a forced oscil-
lator with a spring whose restoring force depends on the displacement cube according
to the following law

Fp=—Kz—br" (1.84)

where, for [ > lg. K Z2K,,, and b= Ix"mlo/l3.

If the amplitude of the oscillation is small, the term «*/l? is small and can be
neglected. In addition, for A < 0, the Duffing oscillator describes the dynamics that
such that a can be observed a chaotic motions.

b<0
(softening)

F 9 F
=—Kx\
(K >0) \
IIl.
L]
|I'|
\J
b>0
(hardening)

Fig. 1.19 The Duffing
oscillator, for K > 0. can
be interpreted as a forced
oscillator with a nonlinear
spring whose restoring
force is written as Fy =
—Kz—bz>.



Duffing Phase portrait

Duffing Nonlinear Oscillator D Tin e 130
1.5 A A =
241 e .
o - -
1 - =
224 Lo VA -
. . - . . - . .:"‘ 7 7 s
In Fig. 1.20 is reported an example of the dynamic behavior of the Duffing oscillator 2 ol [,
y d [3 )= ‘ v v . . o o~ '|I“ ] ]
for K =—1, R=0.1, b=0.25, w =2 and v = [1.3 1.322 1.5], for [0, 1] i.c. Observe % g I REN
that by increasing the forcing amplitude ~ the oscillator assumes a chaotic trend with 15 | 05 ;S N R ;i
a complex phase portrait. oD IS
. . i ) . i . . 1.4 i w0 w«,\" h.\ '«‘: T :-._ —_
-} ~ 4 P o 4 oo . . N s 15 1 . - -
For bII]Ell.l R (i.e. R~0), if the amplitude of the oscillation is increased, the Duffing 100 130 140 180 180 200 ; s . s
equation of motion can be written as t w,
Duffing Time series ~=1.322
mi = —Kux—be® — F cos(wt). (1.85) 247
220
2 H
This is the case of a simple mass-spring mechanical oscillator reported in Fig. (1.21). S |
16 I
! 14
m . . 1.2 -
| Fig. 1.20 Dynamic be- .
i - . 100 120 140 160 180 200
l F havior of the Duffing oscil- t
* lator for K = —1. R=0.1. Duffing Time series 4=1.500

b=0.25 w=2and v=
""""""""""""""""""""" [1.3 1.322 1.5], for [0, 1]
i.c. Time domain evolution
of the position z(t) and
phase portrait. Note that
for a forcing amplitude .
v > 1.3 the behavior of the 0 ; ' ' w,
Duffing oscillator takes on

a chaotic pattern with a

complex phase portrait.

Bl TR TR

Fig. 1.21 Single mode
model for nonlinear oscil-
lator consisting of a mass-
spring system without a
supporting plane.



Duffing Nonlinear Oscillator

In Fig. 1.22 is reported an example of the dynamic behavior of the Duffing oscillator
for K=1 R=0,b=025 w=2and v= [1.3 1.322 1.5], for [0, 1] i.c. So, also in
this case by increasing the forcing amplitude the behavior of the oscillator takes on a
chaotic pattern with a complex phase portrait.

Fig. 1.22 Dynamic be-
havior of the Duffing os-
cillator for K = 1. R =0,
b=0.25 w=1and v =
(0.2 2 5], for [0, 1] i.c. Time
domain evolution of the
position z(t) and phase
portrait. Note that also
in this case by increasing
the forcing amplitude the
behavior of the oscillator
takes on a chaotic pat-
tern with a complex phase
portrait.
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Duffing Nonlinear Oscillator

However, for its analysis, as a first approximation of x, it is possible to consider
a solution of the type x; = Acos(wt) and replace it in the right part of Equ. (1.85)
obtaining a second approximation of the displacement x, which is denoted as xo. So

we can write

miig = —I Acos(wt) — b(Acos(wt))? — Fycos(wt) (1.86)
then, using the identity cos®z = 3 /4dcosxz+1/4cos3w, we get
KA 3bA% K, bA?
Tog = — — | cos(wt) — 0s(3wt). 1.87
"2 ( m * dm * m ) cos(wt) 36mw? cos(3wt) ( )

This approximation. known as the Duffing method. is reliable if the terms b. A and £j
are sufficiently small. It should be noted that the term bz is responsible for generating
the third harmonic of pulsation 3w. Moreover, considering the Eqn. (1.87), equating
the term cos(wt) to the term Acos(wt) (first approximation for y) we obtain

, KA 3bA* F
2o 2 L0

m Am m

Aw

(1.88)

i.e.




Duffing Nonlinear Oscillators

O e e e e e wdot = duff(t, w)
dXdt = VanderPol(t,X) K R b gamma omega;
x = X(1); wdot(1) = w(2);
y = X(2); wdot(2) = -R*w(2) - K*w(1l) - b*w(1)”3 + gamma*cos(omega*t);
mu=1; %0, 1, 2, 5 10, 20, 50 wdot=wdot";
dxdt = mu*(x-1/3*x"3-y);
dydt = x/mu;
dXdt = [dxdt; dydt];

dy = lorenz( t,y)
sigma = 10.0; %
rho= 28.0; %rho

y = pendulum(t, x) beta = 8.0/3.0; %beta

wl = x(1); %i. c.

W2 = x(2); dy(1,1) = sigma*(y(2)-y(1));

L . dy(2,1) = rho*y(1) - y(2) - y(1)*y(3) ;
w2 = -sin(wl); dy(3,1) = y(1)*y(2) - beta*y(3);

y = [dwl; dw2];

dy = rigid(t,y)
dy = zeros(3,1); % a column vector

dy(1) = y(2) * y(3);
dy(2) = -y(1) * y(3);
dy(3) = -0.51 * y(1) * y(2);



Lorentz

dy = lorenz( t,y)
sigma = 10.0; %
rho= 28.0; %rho
beta = 8.0/3.0; Zbeta

sigma*(y(2)-y(1));
rho*y(1) - y(2) - y(1)*y(3) ;
y(1)*y(2) - beta*y(3);

dy(1,1)
dy(2,1)
dy(3,1)




Continuous Vibrating Systems

Fig. 1.25 Mechanical oscillator with N mass-spring elements. At equal length, for N — oc. the
system become continuous, defined as distributed parameters system and characterized by an
infinite number of modes,

-——— - ———— — - ———-

For the development of the model, consider a string of infinite length and for
simplicity we suppose that it does not offer an appreciable resistance to bending,
cutting and that, for small displacements. its tension remain constant. We indicate,
with 1 [kg/m| the linear mass-density, with K [N] the tension, and with y(x,¢) the
displacement (considered only along the y axis). For the determination of the model
of the stretched string, we consider an infinitesimal long section A so that the mass
of the section is equal to pAuwx.

K=Stmmgtension  ;=Mass/length

_v{x.?‘)‘ //ﬁw (linear mass-density)
\L/ \// ’
X

a) b)

Fig. 1.26 Representation
of the string of infinite
length (a), and its in-
finitesimal section (b).




Continuous Vibrating Systems

: 02yt
Model der|ved’ 1) mass-density x transversal-acceleration —— Y ( - ) or i
by the Newton’s odt
o | Oyt .
low: F=ma 2) tension X curvature — K ;( 3 ) or Ky
£

Thus, the equilibrium between the two forces leads to the writing of the wave equation
(or D’Alembert’ equation) to a single dimension ( 1-D wave equation)

_0%y(x.t) 0%y(w.t)

K ——- = ——s. 1.93
a2 A0 ( )
By defining the quantity ¢? = K /p the previous equation can be rewritten as
0%y(x.t 1 0%yt

or2 2 2



Solution of the String Wave Equation

The two main assumptions for determining the solution of Eqn. (1.94) are that an
infinitesimal string segment d., moves only vertically (so that only from the transver-
sal components, can be calculated the acceleration) and that the amplitude of the
vibration is small. With these assumptions the solution of the Eqn. (1.94), (published
by D’Alembert in 1747), can be written as

yle.t) =y (1‘——)+j (H%) (1.95)

where the term y™ (t —
while the term 3y~ (f +
shown in Fig. (1.27). |

) represents a wave traveling to the right, or progressive wave,
) represents a wave traveling to the left, or regressive wave,

z
C
-
C
So, the constant ¢ represents the wave propagation speed.

String inital position

Regressive wave (sx) Progressive wave (dx)




Solution of the String Wave Equation

String inital position

Regressive wave (sx) Progressive wave (dx)
P Can’
<—,” ™ L0 N>
_ r Y v hY -
________ =

In addition, you can find a harmonic solution of the wave equation that, in expo-
nential notation, takes the form

§(x,t) = Al Wi=ke) | Bei(wWithe) (1.96)

in which the quantity y, A and B are complex (defined in §1.2.3 as rotating vectors
and phasors), for which y(x,t) = Rely(x,1)].



Wave Equation: Space and Time

Ar(rx) T= Penjd
f =1/T = Frequency

=27 f = Pulsation
: - Fixed space: time variable
a) 0
1( Period T +
A(r.x) ¢ = Wave propagation speed

A =c/f £ Wavelength

A
k = o/c = Wavenumber

- Fixed time: space variable

b)

{ Wavelength A



Wave Equation Solution

1.6.2.3 Bounded String Wave Solution

Consider a traveling wave that encounters a sharp change in the material in which
it is propagating. In this situation a percentage ot the energy, according to a certain
coefficient called reflection coefficient k,., will be reflected. The result is therefore that
the reflection coefficient is defined as the ratio between the reflected wave and the
direct wave. Considering the general solution in Eqn.(1.95) we have that

=
k. = =2



Wave Equation Solution

1.6.2.4 Fixed-End String at =10

Consider the case in which a string termination, for example at x =0 is fixed. In this
situation the vertical displacement will necessarily be null y(0,t) =0, it follows that

the wave will be entirely reflected, i.e. f~(ct) = —f7(ct). In this case the reflection
coefficient is equal to k. = —1, and the reflected wave will be inverted as shown in
Fig. 1.29

v(t.x) 1

Fig. 1.29 Reflection with
bound extreme. The re-

flected wave is inverted
kf‘ - —].

¥(t.x)| =0

reflected wave f~



Wave Equation Solution

1.6.2.5 Free-End String at x =10

In the opposite casein which the termination is completely free, since no transverse
force is possible we will have that dy/dx = 0. Differentiating the general solution
in Eqn. (1.95), we obtain dy/dx = —f'T + f'~. By integrating it can be seen that
f~(ct) = fT(ct), this means that we will have reflection without inversion as illus-
trated in Fig. (1.30). In this case the reflection coefficient is equal to +1.

In the case of several dimensions, such as in the acoustic air waves which will be
treated later, it results then that the angle of incidence of a wave front on a reflecting
surface is equal to the angle of the reflected wave.

y(t.x) 1 _ .
direct wave f

-~ -~
b

/_7 \ '\ /! h

fo(et)= 1 (en) " 7 ' KA
Fig. 1.30 Reflection with ’ ’
~ - “«e-

free extreme. The reflected
wave is kr = 1.

reflected wave f~



Wave Equation Solution

1.6.2.6 Standing Waves and Vibration Modes

A particular but very important case of interference is due to waves propagating in the

same direction in opposite directions. Suppose the two waves with the same amplitude
are defined as

fT(z,t) = ypsin(kz — wt)
f~ (z.t) = yosin(kx +wt).
In this case, considering the general solution (1.95), we have that

y(x,t) = yo [sin(kx — wt) +sin(kx +wt )| = 2yg sin(kz) cos(wt)

then, we can observe that this function cannot properly represent a traveling wave,
since the spatial and temporal variables are separated (i.e. we have the product
2yosin(kx)cos(wt)). In other words, the argument of the function y(z,t) is not of
“traveling” type (ct = ). In fact, the function y presents itself as the product of two
functions, one dependent only by z, the other dependent only on t.



Wave Equation Solution

The simplest way to obtain this particular situation is to exploit the reflections of
a wave that occur in the presence of a discontinuity of the propagation medium, for
example, such as a rigid wall that fully reflects the wave.

Considering the spatial variable x, we can see that the function has minimum when

n
Tr=—"

ke

these points are defined as nodes. On the contrary, we have maximum for

these points are defined as antinodes. Fig. 1.31 shows the trend of the standing wave
also known as a stationary wave due to direct and reflected wave interference.



Wave Equation Solution

To better explain the phenomenon, consider a plucked L-length string, i.e. the
string of length L is fixed at both ends (as in a guitar strings or a piano, etc.). So, we
generate waves that propagate ending at the fixed ends of the string. At the ends the
waves are reflected by reversing the phase: the string becomes a site of progressive
and regressive waves that interfere with each other. This situation is illustrated in
Fig. 1.32.

The interference, due to the sum of the two waves, can be destructive or cumulative.
The only modes that “survive” are called stationary waves, also called normal modes
of vibrating the string. Their characteristics depend on the length L (and the other
parameters) of the string.

From the conditions to the string extremes we have that

y(z,t),_o=0, and y(z,t)|,_; =




Wave Equation Solution

t =3L/4a Fig. 1.32 Finite length
i i | string with fixed termi-
t=7L/8a —_— = E— nations, simultaneously
D= aar-=-ulll plucked on three points P.
t=Lfa . f,_




Wave Equation Solution

we can easily see that the first condition is automatically satistied. While for the
second one imposes that
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with n positive integer.

If this condition is not met, the interference between the various reflected waves is
destructive and the vibration decreases very rapidly. The wavelengths of the normal
modes (and therefore the relative frequencies) are not arbitrary, but are related to

the length of the string
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The modes are therefore quantized. The mode having the maximum wavelength (equal
to 2L), called fundamental or first harmonic, has nodes only in the extremes. the
second mode (second harmonic) has a node in the middle of the string, the third way
has two nodes, and so on. So we will have stationary waves on a string fixed at the
two ends or in a tube containing air, closed at the ends (see Fig. 1.29).

The waveshape that is established on a string at fixed ends is a linear combination
of normal modes. The same is true in the case of a closed tube at the ends, as in many
wind instruments.
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StatiOnary Wave Fig. 1.33 Stationary

W wave and modes of a
stretched string of length
L constrained to extremes.
Note that, an antinode is
spaced from a node by a
A/4 distance. Also note
that for the fundamental
mode A = 2L, for the 2nd
harmonic A = L. for the
3rd harmonic A = 2L/3,
and so on.

Equlibrium or string at rest

1st or fundamental harmonic

Remark 1.11. Observe that, this phenomenon can be exploited for the construction
of musical instruments. From the acoustic-musical point of view, it can allow to gener-

ate a “rich in harmonics” timbre, that depends on the characteristics of the string, or
from the shape of tube section. In addition, by changing the length L of the string (or
tube in the case of wind instruments) we can define the various vibration frequencies
(or fundamental-mode). In other words, as for a harp, a piano, a trumpet, a clarinet,
and son on, by varying the length of the string (or of the air column), we can define
the various tonal range of the instrument.
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Strings Vibration and Musical Scales

The most common way to produce sounds is to use vibrating strings. In fact, by
varying the length of the string, with the same tension and mass-density, there is a
variation in the frequency of the sound emitted. Between the frequency and length
of the string there is a relationship of inverse proportionality: long string, heavy note
(bass tones); short string, sharp note (high tones).

1.6.3.1 Natural Musical Scales

Consider a L length string tied to its extremes. In case the string is plucked in such
a way as to excite the only fundamental mode, the resulting vibration would have a
wavelength equal to twice its length (see Fig. 1.34). In fact, considering the relation
A =¢/f the frequency of the emitted sound would depend on the tension, on the
mass-density and on the length L according to the following law

K/p
fo= 211 (1.104)
From the above, then, if a string of length L emits the C (or in Italian notation Do)
note which we suppose to be the reference, the same string of length L /2 sounds at
double frequency and emits a C to the higher octave (i.e. C2). The length L/3 gives a
G2 (i.e. of an octave superior). Wanting to generate a G of the same octave of the C
of reference enough to take a double length 2L /3. Again a string length L/4 generate



Strings Vibration and
Musical Scales

Fig. 1.34 Fundamental ~——_— — -

mode or 1st harmonic
where A =2L. 0 L

a 3C sound, i.e. two octaves above the reference, a string length L/5 generate an E
sound and so on.

Fig. 1.35 shows the link between the length of the string and the frequency of the
sound emitted for some notes. For example, if the string at the top vibrates at a
frequency corresponding to the musical note C, it can be seen that by decreasing its
length the pitch of the sound increases.
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Fig. 1.35 Frequencies of
the fundamental mode,
and example of musical
note, for a string of variable
length.

2f, C2 or Doott.
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In the past, however, Pythagoras and his pupils realized that by dividing a string
according to ratio composed of small numbers and making it vibrate, harmonic sounds
were obtained. With the Pythagorean approach the notes are defined as ratios between
the lengths of the string that generates the sound.

The Western musical tradition has assigned a special role to some frequencies, or
rather to a sequence of relationships between frequencies (or between the lengths of
the strings that generate them). The frequency of the notes that derive from this
approach is called a natural scale. The natural scale has been so named, because it
is based on a physical phenomenon: the succession of harmonic sounds. The natural
scale is made up of seven ftundamental notes: C, D, E, F, G, A, B. If f is the frequency
(in hertz) of the fundamental note C, the frequency of the others can be obtained by
considering the relationships between lengths of a string. Taking as a reference the
note C, for simplicity, assign the frequency normalized to 1, the relative frequencies
of the intervals are shown in Fig. 1.36-a).

The musical scale is enriched with other notes introducing the sharp and flat
changes between two successive notes, except between the E and the F and between
the B and the C of the upper octave.
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In the natural scale, it is said sharp (indicated with the symbol “#7) the note with
an interval of 25/24 higher than the reference note. While, we say flat (indicated with
the symbol “b”) the note at the interval 24/25, lower than the reference.

Remark 1.12. Observe that, in the natural scale, the intervals between the notes
are not all the same and only some musical instruments, such as the violin, allow to
produce all the notes of the natural scale (not the keyboard instruments).

The determination of the frequencies of the notes can be done in the following way.
Starting from note B, you get the other notes going up from fifth to fifth (a fifth
corresponds to an interval of three tones plus a semitone: see Fig. 1.36-a)) finding
F#, C# etc. Then starting from the F and descending from fitth to fitth, we find
Bb, Eb etc. Realizing the stairs in this way it happens that the C# and the Db, for
example, do not coincide.
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1.6.3.2 Temperated Music Scale

To simplify the notation, and to avoid the inconveniences of the natural scale, at the
end of 1600, Andreas Werckmeister (later followed by .J. Sebastian Bach) introduced
the temperate scale. In the temperate scale, also called equalized-scale, the intervals
of two successive notes are always the same.

The mathematical construction of this scale is based on the general formula
(with k e N positive integers), where N represents the total number of intervals or
semitones of the scale and k € [0, N — 1] represents the distance in semitones with
respect to the note taken as reference (in musical language the reference is said first
degree). With this definition two notes of frequency f,, and f,4+1 has one semitone
distance their ratio (in frequency) is f,,411/fn = 21/N or, in general, we have

ok/N

fn+k

fn

In the twelve-tone scale the octave is subdivided into twelve semitones for which
N = 12; that is, two notes have a semitone distance if f,,1 = fn21f 12 Starting from
a reference note (for example the a a fg =440 Hz) it is possible to obtain the frequency
of the distant k-semitones as f, = fDQkf 12,

In Fig. (1.36)-b), are shown the relative frequencies of the tempered musical scale.
Observe that the frequencies of the natural and temperate scale are not exactly the
same.

k
= 2N .
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Vibrating circular membrane
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Sources separation - 3 Spline-Neurons

reverberating environment
(6x5%x3.5) [m] T60=200ms Fs=16kHz

Each microphone
acquires all signals in
the room.

Problem:
Saparate alla sources
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Machine Learning
for Signal Processing
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