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Spectrum Analysis-A Modern Perspective 

STEVEN M. KAY, MEMBER, IEEE, AND STANLEY LAWRENCE MARPLE, JR., MEMBER, IEEE 

I .  INTRODUCTION 

STIMATION of the power spectral density (PSD), or 
simply the  spectrum, of discretely  sampled deterministic 
and stochastic processes is usually  based on procedures 

employing the fast Fourier  transform  (FFT).  This  approach to 
spectrum analysis is computationally efficient and produces 
reasonable results for a large  class  of  signal  processes. In spite 
of these advantages, there are  several inherent  performance 
limitations of the FFT  approach.  The most prominent limita- 
tion is that of frequency resolution, Le., the ability to distin- 
guish the spectral responses  of two or more signals. The fre- 
quency resolution in hertz is roughly the reciprocal  of the  time 
interval in seconds over  which  sampled data is available. A 
second limitation is due to the implicit  windowing of the  data 
that occurs when  processing with  the  FFT. Windowing  mani- 
fests  itself as “leakage” in  the spectral domain, i.e., energy in 
the main lobe of a spectral response  “leaks” into  the sidelobes, 
obscuring and distorting other spectral responses that are 
present. In fact, weak  signal spectral responses can be  masked 
by  higher  sidelobes from stronger spectral responses. Skillful 
selection of tapered  data windows  can  reduce the sidelobe 
leakage, but always at  the expense of reduced resolution. 

These two performance limitations of the  FFT  approach are 
particularly troublesome when  analyzing short data records. 
Short  data  records  occur  frequently in practice because  many 
measured  processes  are  brief in duration or have  slowly  time- 
varying spectra that may  be  considered constant  only  for  short 
record lengths. In radar, for  example, only a few data samples 
are  available from each  received radar pulse. In sonar, the 
motion of targets results in a time-varying spectral response 
due to Doppler  effects. 

In an attempt to alleviate the inherent limitations of the  FFT 
approach, many alternative spectral estimation  procedures 
have  been proposed  within  the last decade. A comparison of 
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the spectral estimates  shown  in Fig. 1 illustrate the improve- 
ment that may  be obtained  with  nontraditional approaches. 
The three spectra illustrated were computed using the first 
nine  autocorrelation lags’  of a process  consisting of  two equi- 
amplitude sinusoids at 3  and  4 Hz in additive white noise. The 
conventional spectral estimate based on  the nine known lags 
R,(O), , R,(8) is shown in Fig. l(a).  The  spectrum is a 
plot of 5 12 values obtained by application of a 5 12-point  FFT 
to the nine  lags,  zero-padded with  503 zeros. This  spectrum, 
often  termed  the Blackman-Tukey  (BT) estimate of  the PSD, is 
characterized by  sidelobes, some of which produce negative 
values for  the PSD, and by  an inability to distinguish the  two 
sinusoidal  responses. 

Fig. l(b) shows the spectral response of the autoregressive 
(AR) method based on  the same nine lags. The  improvement 
in resolution over that shown in Fig. l(a) has contributed to 
the popularity of this alternative spectral estimate. Although 
the AR spectral estimate was originally developed for geophys- 
ical data processing,  where it was termed the maximum entropy 
method (MEM) 1161, 1371-1391, [501,  [841,  [1361,  [1381, 
11581, [2211,  [2311,  [2461,  12471,  it has been  used for ap- 
plications in  radar [751,  [921, 1991,  [1161,  [1251,  [1261, 
[216], sonar [122],  [198], imaging [98], radio astronomy 
[1621,  [2641,  [2651, biomedicine [711,  [741,  oceanography 
[961, ecological systems [ 881, and direction fiding [ 701, 
[ 128 I ,  [ 233 I .  The AR approach to spectrum analysis is closely 
related to linear prediction  coding (LPC) techniques used in 
speech  processing  1801, [ 1301, 1 1431, [ 1451.  The AR PSD 
estimator fits an AR model to  the data. The origin of AR 
models  may be found in economic  time series forecasting [ 3 1 I , 
12761  and statistical estimation  [1891-[1911.  The MEM 
approach makes different assumptions  about  the lags, but  for 
practical purposes, the MEM and AR spectral estimators are 
identical for one-dimensional  analysis  of  wide sense stationary, 
Gaussian  processes. 

The  ultimate resolution of *e two sinusoidal signals into 
two delta function responses in  a  uniform spectral floor, repre- 
senting the white noise  PSD  level, is achieved with  the Pisarenko 
harmonic  decomposition (PHD) method shown in Fig. l(c). 
This technique yields the most  accurate  estimate of the spec- 
trum of  sinusoids in noise, at least when the  autocorrelation 
lags are known. 

As evidenced  by the spectrum examples of Fig. 1, the devel- 
opment of alternative spectral estimates in widely different 
application areas has  led to a confusion of conflicting termi- 
nology and different algorithm development viewpoints. Thus 

‘The autocorrelation  function Rxx(k) of a stochastic  wide sense 
stationary  discrete  process x ,  at lag k is defined  in this paper as the 
expectaaon of the  product x,+kx;, or RXx(k) = E[x ,+kxg l ,  *ere 
x, is assumed to  have zero  mean. The denotes  complex  conjugate, 
since  complex processes are assumed in general, and E ( ) denotes  the 
expectation  operator. 
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Fig. 1 .  Examples of three  spectral  estimates based on nine known auto- 
correlation  la@ of a process consisting of two equi-amplitude  sinusoids 

sinusoid  power).  (a) BT PSD. (b) Autoregressive PSD. (c) Pisarenko 
in additive white  noise  (the variance of the noise is 10 percent of the 

harmonic  decomposition PSD. 

two purposes of this review  are  1) to  establish a common 
framework of terminology and symbols and  2) to unify the 
various approaches and  algorithm developments that have 
evolved in various  disciplines. 

Claims  have  been  made concerning the degree  of  improve- 
ment  obtained in  the spectral resolution and the signal detect- 
ability when AR and Pisarenko techniques are  applied to 
sampled data [361,  [2061,  [2501,[2511. Theseperformance 
advantages, though, strongly depend upon the signal-to-noise 
ratio (SNR), as might be expected. In fact, for low enough 
SNRs the modern spectral estimates are often no better  than 
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those obtained with conventional FFT processing [ 1221, 
[ 1501. Even in those cases  where  improved spectral fidelity 
is achieved by use of an alternative spectral estimation pro- 
cedure, the  computational requirements of that alternative 
method may be significantly  higher than  FFT processing. This 
may  make  some modem spectral estimators unattractive for 
real-time implementation.  Thus a third objective  of this paper 
is to present tradeoffs among the various  techniques. In par- 
ticular, the performance advantages  and  disadvantages will be 
highlighted for each method,  the  computational complexity 
will be summarized, and criteria will  be presented for deter- 
mining if the selected spectral estimator is appropriate for  the 
process  being analyzed. 

Some historical perspective is instructive for an appreciation 
of the basis for modern spectral estimation. The illustrious 
history of the  Fourier transform can be traced back  over 200 
years [ 341, [ 2231. The advent of spectrum analysis  based on 
Fourier analysis  can  be traced to  Schuster, who was the f i i t   t o  
coin the  term “periodogram” [2  181, [ 2 191. Schuster made 
a Fourier series fit to  the variation in sun-spot  numbers  in an 
attempt to  f i id “hidden periodicities” in  the measured  data. 
The  next pioneering step was  described in Norbert Wiener’s 
classic paper on “generalized harmonic analysis” [269]. This 
work  established the theoretical framework for  the  treatment 
of stochastic processes  by  using a Fourier transform approach. 
A major result  was the  introduction of the  autocorrelation 
function of a random process  and its  Fourier transform rela- 
tionship with the power spectral density. Khinchin [ 1271 
def ied a similar relationship independently of  Wiener. 

Blackman  and Tukey, in a classical publication in  1958 [ 25 1, 
provided a practical implementation of  Wiener’s autocorre- 
lation approach to  power spectrum estimation when  using 
sampled data sequences. The  method first estimates the auto- 
correlation lags from  the measured data, windows (or tapers) 
the  autocorrelation estimates in  an appropriate manner, and 
then  Fourier  transforms  the windowed  lag estimates to  obtain 
the PSD estimate. The BT approach was the most popular 
spectral estimation technique until  the introduction of the 
FFT algorithm in 1965, generally credited to Cooley and 
Tukey [ 531.  This computationally efficient algorithm re- 
newed an interest in the periodogram approach to PSD esti- 
mation. The periodogram spectral estimate is obtained as 
the squared magnitude of the  output values from an FFT 
performed directly on the data set (data may be weighted). 
Currently, the periodogram is the most popular PSD estimator 

Conventional FFT spectral estimation is based on a Fourier 
series  model  of the data, that is, the process is assumed to be 
composed  of a set of harmonically related sinusoids. Other 
time series  models  have  been  used in nonengineering  fields 
for many  years.  Yule [276] and  Walker [258]  both used 
AR models to  forecast trends in economic time series.  Baron 
de Prony [202] devised a simple procedure for  fitting expo- 
nential models to data  obtained  from an experiment in  gas 
chemistry. Other models  have  arisen in the statistical and 
numerical  analysis  fields. The  modem spectral estimators 
have their  roots  in these nonengineering  fields  of time series 
modeling. 

The use  of nontraditional spectral estimation techniques 
in a significant  manner  began  in the 1960’s. Panen [ 1891, in 
1968, formally proposed AR spectral estimation. Indepen- 
dently in 1967, Burg [ 371 introduced  the maximum entropy 
method, motivated by his work with linear prediction filtering 

[171,[241,  [321, [1051-[1071,  [1091. 
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in geoseismological applications. The one-dimensional MEM 
was shown formally by Van den Bos [255]  to be  equivalent 
to  the AR  PSD estimator. Prony's method also bears some 
mathematical similarities to the AR estimation algorithms.  An 
area  of current research is that of autoregressivemoving average 
(ARMA)  models. The ARMA model is a generalization of the 
AR model. It appears that methods based upon these may  pro- 
vide  even better resolution and  performance  than AR methods. 
The PHD [194], [ 1951 is one example of a spectral estimation 
technique based upon  a special  case  ARMA  model. 

The  unifying  approach  employed in this paper is to view 
each spectral estimation  technique as being  based on the  fitting 
of measured data to  an assumed  model. The variations in per- 
formance among the various spectral estimates may often be 
attributed to how well the assumed model  matches  the process 
under analysis [ 1731. Different models  may yield similar 
results, but one  may require fewer model  parameters  and is 
therefore more efficient in its  representation of the process. 
Spectral estimates of  various techniques  computed  from sam- 
ples  of a process  consisting of sinusoids in colored Gaussian 
noise are presented  in  Section I11 to illustrate these variations. 
The process  has both narrow-band  and  broad-band  compo- 
nents. This process  helps to  illustrate how  some spectral esti- 
mates  tend to  better estimate  the narrow-band components 
while other spectral estimates  better  estimate  the  broad-band 
components of the spectra. This example  process  emphasizes 
the need to understand the underlying  model  before passing 
judgement on a spectral estimation  method. 

This tutorial is divided into five sections. Section I1 is the 
largest section. It contains a tutorial review  of all the  methods 
considered in this paper. Section 111 provides a summary table 
and illustration that highlights and  compares the  various mod- 
em spectral estimation  methods.  Section IV briefly examines 
other application areas that utilize the spectral estimation 
methods discussed  in this paper. 

A table of contents of these three sections is included below 
to enable the reader to quickly locate topics of interest. 

11.  Review  of Spectral Estimation Techniques 
A. 
B. 
C. 
D. 
E. 
F. 
G .  

H. 
J. 
K. 
L. 

Spectral Density  Definitions and Basics 
Traditional Methods  (Periodogram,  Blackman-Tukey) 
Modeling  and  Parameter Identification Approach 
Rational  Transfer  Function Modeling  Methods 
Autoregressive (AR) PSD Estimation 
Moving  Average  (MA)  PSD Estimation 
Autoregressive  Moving  Average  (ARMA)  PSD 

pisarkdo H ~ O I I ~ C  Decomposition (PHD) 
Prony Energy Spectral Density Estimation 
Prony Spectral Line Estimation 
Maximum  Likelihood  Method (MLM) 

Estimation 

111. Summary  of Techniques 
A. Summary  Table 
B. Illustration of Each Spectral Estimate 

w. Other Applications of Spectral Estimation Methods 
A. Introduction 
B. Time  Series Extrapolation  and Interpolation 
C.  Prewhitening Filters 
D. Bandwidth  Compression 
E. Spectral Smoothing 
F. Beamforming 
G .  Lattice Filters 
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No discussion of band-limited  extrapolation  techniques  for 
spectral estimation is presented  here since a good tutorial is 
already  available [ 1031.  The  conclusion,  Section V, makes 
observations  concerning  trends in research  and application of 
modem spectral estimation. 

11. REVIEW OF SPECTRAL ESTIMATION TECHNIQUES 
A.  Spectral  Density  Definitions and Basics 

Traditional spectrum estimation, as currently implemented 
using the FFT, is characterized by  many tradeoffs in an effort 
to produce statistically reliable spectral estimates. There are 
tradeoffs in windowing,  time-domain  averaging,  and frequency- 
domain averaging of sampled data  obtained  from  random pro- 
cesses in order to balance the needs to reduce  sidelobes, to 
perform effective ensemble  averaging,  and to ensure adequate 
spectral resolution. To summarize the basics of conventional 
spectrum analysis,  consider first the case  of a deterministic 
analog  waveform x( t ) ,  that is a continuous  function of time. 
For generality, x ( t )  will  be considered complex-valued in this 
paper. If x ( t )  is absolute integrable, i.e., the signal  energy 
t is f d t e  

00 

t = I_ I x ( t )  12 d t  < = (2.1) 

then the continuous  Fourier transform (CFT) X ( f )  of x ( t )  
exists and is given  by 

X ( f )  = x ( t )  exp (-j2nft) dt .  (2.2) 

(Note that (2.1) is a sufficient, but  not a necessary condition 
for  the  existence of a  Fourier  transform [331.) The squared 
modulus of the Fourier  transform is often  termed the spec- 

-OD 

h m , S ( f ) ,   o f m ,  

5 V) = I X ( f )  1 2 .  (2.3) 

ParseVal's energy theorem, expressed as 

I, lx(t)12 d t  = 1; IX(f ) I2  df (2.4) 

is a  statement of the conservation of energy; the energy  of the 
time domain  signal is equal to  the energy  of the frequency 
domain  transform, -f-: S (f) d f .  Thus (f) is an energy  spec- 
tral density (ESD) in that it represents the distribution of 
energy as a  function of frequency.  If the signal x ( t )  is sampled 
at equispaced intervals of Ar s to produce a discrete sequence 
x, = x(nAr)  for -= < n <=, then  the sampled sequence can 
be represented as the product of the original time  function 
x ( t )  and an infinite set of equispaced Dirac delta functions 
ti(t). The  Fourier  transform of this product may  be written, 
using distribution theory [33 1, as 

X ' ( f )  = 1- [ 2 x ( t ) S ( r  - nAr)At exp  (-j2nft) d t  
-m n=-m 3 

00 

= A2 x n  exp (-j27rfnAr).  (2.5) 

Expression  (2.5) corresponds to  a  rectangular integration ap- 
proximation of (2.2); the factor Af ensures conservation of 

n=-m 
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integrated area between (2.2) and (2.5) as At +. 0. Expression 
(2.5) will be identical in value to the transform X ( f )  of (2.2) 
over the interval - 1/(2At) < fQ 1/(2At) Hz, as long as x(r) is 
band limited and all frequency components are in this interval. 
Thus the continuous energy spectral density 

S'(f> = IX'(f) I2 (2.6) 

for  data sampled from a band-limited  process is identical to 
that of (2.3). 

If  a) the  data sequence is available from only a f i t e  time 
window over n = 0 to n = N - 1, and b) the transform is dis- 
cretized also for N values  by taking samples at  the frequencies 
f = mAf for m = 0, 1, * * * , N - 1 where Af = 1/NAt,  then  one 
can develop the familiar discrete Fourier transform (DFT) 
[331 from (2.5); 

X,,, = Ar x, exp (-j2mAfnAt) 
N- 1 

n = o  

= At x, exp (-j27mzn/N) 
N- 1 

n = o  

f o r m = O , * * . , N -  1. (2.7) 

Both (2.7) and its associated inverse transform are cyclic with 
period N. Thus by using (2.7), we  have forced a periodic ex- 
tension to both  the discretized data and the discretized trans- 
form values,  even though the original continuous data may not 
have been periodic. A discrete ESD may then be defined as 

also for 0 Q m Q N - 1. Both the discrete 5,,, and the con- 
tinuous 5'Cf) have been termed periodogram spectral estimates. 
Note however that 5,  and S'(f ), when evaluated at f = m/NAt 
for m = 0, - * - , N - 1, do  not yield identical values. 5 ,  is, in 
effect, a sampled version  of a spectrum determined from the 
convolution of X( f )  with the transform of the rectangular 
window that contains the  data samples. Thus  the discrete 
spectrum 5, based on  a  finite  data set is a distorted version 
of the  continuous spectrum 5'(f) based on an infinite data set. 

A different viewpoint must be taken when the process x(t) is 
a wide  sense stationary, stochastic process rather  than  a deter- 
ministic, fiiteenergy waveform. The energy of such processes 
are usually infinite, so that  the quantity of interest is the power 
(time average  of energy) distribution with frequency. Also, 
integrals such as (2.2) normally do not exist for  a stochastic 
process. For  the case  of stationary random processes, the 
autocomlation function 

Rxs(7) = E[x(t + T)X*(t)] (2.9) 

provides the basis for spectrum analysis, rather  than  the ran- 
dom process x(t) itself. The  Wiener-Khinchin theorem relates 
R,(T) via the Fourier transform to $'(f ), the PSD, 

9 ( f  1 = 1- R x x ( ~ )  exp (-j27rf7) dr. (2.10) 
-OD 

* The inverse transform is given by xn = A f L ,,,. X,,, exp (+j?rrmn/N) N- 1 

and  the energy theorem is 

Fig. 2. Direct and indirect methods to obtain PSD (stationary and 
ergodic  properties  assumed). 

As a practical matter, one does not usually  know the statistical 
autocorrelation function. Thus an additional assumption often 
made is that  the random process is ergodic in the first and 
second moments. This property permits the  substitution of 
time averages for ensemble averages. For an ergodic process, 
then, the statistical autocorrelation function may  be equated to 

. r T  
Rxx(7) = lim - x(t + 7)x*(t)dt. (2.11) 

1 

T+- 2T I-, 
It is possible to show [ 1071, [ 1321, [ 1871, with the use  of 
(2.11), that  (2.10) may be equivalently expressed as 

The expectation  operator is required since the ergodic prop- 
erty of Ra(7) does not couple through the Fourier transform; 
that is, the limit in  (2.12)  without  the expected value does not 
converge in any statistical sense. Fig. 2 depicts the direct and 
indirect approaches to obtain  the PSD from the signal x(t), 
based on  the formal relationships (2.10), (2.1 l), and (2.12). 

Difficulties may  arise if (2.12) is applied to   f i i t e  data sets 
without regard to the  expectation and limiting operations. 
Statistically inconsistent (unstable) estimates result if no sta- 
tistical averaging is performed; i.e., the variance  of the PSD 
estimate will not tend to zero as T increases without bound 
[ 1831. 

B. Traditional Methods 
Two spectral estimation techniques based on Fourier trans- 

form operations have  evolved. The PSD estimate based on  the 
indirect approach via an autocorrelation estimate was popular- 
ized by  Blackman and Tukey [ 141. The  other PSD estimate, 
based on the direct approach via an FFT operation on  the 
data, is the one typically referred to as the periodogram. 

With a f i t e  data sequence, only a f i t e  number of discrete 
autocorrelation function values, or lags, may by estimated. 
Blackman and Tukey proposed the spectral estimate 

M 

n=-M 
h ( P )  = At ff,(m) exp  (-i2?rfmAr) (2.13) 

based on  the available autocorrelation lag estimates k,(m), 
where - 1/(2At) Q f Q 1/(2At) and denotesan estimate. This 
spectral estimate is the discrete-time version of the Wiener- 
Khinchin expression (2.10). An obvious companion autocor- 
relation estimate, based on (2.1 l), is the unbiased estimator 

N -  1 
Ixnl'At= IXml'Af. 

N -  1 

n=O n=O 
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for m = 0, * * I ,  M, where M < N - 1. The negative  lag estimates 
are determined  from  the positive  lag estimates as follows: 

2,,(-m) = i i&(m)  (2.15) 

in accordance  with  the  conjugate  symmetric  property of the 
autocorrelation  function of a stationary process. Instead of 
(2.14),  both Jenkins-Watts [ 1071  and Panen [ 1881, [ 1891 
provide vents for  the use  of the autocorrelation  estimate 

h 1 N - m - 1  
R&(m) = - x n + m x i  (2.16) 

N n = o  

defined  for m = 0, - , M, since it tends to have  lesshmean- 
square error than  (2.14)  for p n y  finite data sets. R:,(m) 
is a biased estimator since E[Rk(m)l  = [(N - m)/Nl R,,(m). 
The mean  value is a triangular window  weighting  (some- 
times called a Bartlett weighting)  of the true autocorrelation 
function. 

The direct method of spectrum analysis is the modem ver- 
sion  of  Schuster’s  periodogram. A sampled data version of 
expression (2.12), for which  measured data is available only 
for samples xo, * * , XN-  1, is 

also defined  for  the  frequency interval - 1 /( 2At) < f < 1 /( 2 k ) .  
Note that  the expectation  operation in (2.12)  has  been  ignored 
for the moment. Use  of the fast Fourier  transform (FFT) will 
permit  evaluation of (2.17)  at  the discrete set of N equally 
spaced frequencies f m  = mAf  Hz, form = 0, 1, - - , N - 1 and 
Af = l/NAt, 

1 
gm=~PER(fm)==lXm12 (2.18) 

where X, is the DFT of (2.7). 9 ,  is identical to  the energy 
spectral density sm of (2.8) except for  the division by the  time 
interval of NAt seconds required to  make 9 ,  a power spectral 
density. The  total power in the process,  which is assumed 
periodic due to  the DFT property, is 

Power = 9,Af 
N- 1 

(2.19) 
m =O 

based on rectangular integration 5pproximation  of  PER. If 
the  A f factor is incorporated into f’,,, , then 

This is the  quantity  often  computed as the  periodogram, but 
it is not scaled appropriately as a PSD.  Using (2.20), it is the 
peak in the PSD plot, rather than the area under the  plot,  that 
is equal to  the power of the assumed periodic signal. The com- 
putational  economy of the FFT algorithm has  made this ap- 
proach  a  popular one. 

Often  a periodogram  of N data samples is computed using 
(2.18) when the measured  process has detenninistic compo- 
nents  imbedded in random noise. As pointed out earlier, care 
must be taken since statistically inconsistent results can  occur 
if (2.18) is used literally without regard to  the expectation 
operation. This  need for some sort of  ensemble  averaging, or 

smoothing of the sample spectrum, is illustrated by  Oppen- 
heim  and Schafer [ 183, p.  5461  and Otnes and Enochson 
[ 184, p. 3281  with examples  of a white-noise  process in which 
the variance of the spectral estimate does not decrease,  even 
though longer  and  longer data  sequences are  used. Bartlett 
[ 181 had recognized the statistical problems with (2.18)  and 
suggested splitting the  data into segments, computing 9 ,  for 
each segment, and  averaging the periodograms of all  segments. 
Welch [262], [ 2631  suggested a special  digital procedure  with 
the FFT that involves  averaging  periodograms. 

Other mechanisms for  approximating an  ensemble  average 
make use of windows in  the time or frequency  domain,  or 
both [ 1831, [ 1841. Overlapped  weighted  segment  averaging 
is advocated  by Nuttall and Carter [43],  [44], [ 1751, [ 1791, 
[ 18 11 to give stability and to minimize the impact of window 
sidelobes. 

Other references for the FFT and its application for PSD 
estimation may  be found  in Bergland [ 191, Bertram [221, 
[231, Brigham  and  Morrow [32],  [33], Cochran et al. [521, 
Cooley et al. [ 541, [ 55 I ,  Glisson et 01. [ 771, Nuttall and Carter 
[43],  [181], Richards [207], Rife and Vincent [208], Webb 
[2591, and  Yuen [2741,  [2751. 

In general, the spectral estimates g a ~ ( f )  and @ n ~ ( f )  are 
not identical. However,  if the biased autocorrelation  estimate 
(2.16) is used  and as many lags as data samples (M = N - 1) are 
computed,  then the BT estimate  and the periodogram esti- 
mate yield identical numerical results [ 1841.  Thus  the 
periodogram  can be viewed as a special  case of the BT pro- 
cedure. It is for this reason that  the BT and  periodogram 
estimates are occasionally termed taper and transform (TT) 
approaches [ 1 161. 

Many  of the  problems of the periodogram PSD estimation 
technique  can be traced to  the assumptions made about  the 
data  outside  the  measurement interval. The finite data se- 
quence may  be  viewed as being obtained by  windowing an 
infinite length sample sequence  with  a  boxcar function. The 
use of only this data implicitly assumes the unmeasured data 
to be zero, which is usually not  the case. This multiplication 
of the actual time series  by a window function means the 
overall transform is the convolution of the desired transform 
with the transform of the window function. If the  true power 
of a signal is concentrated in a narrow bandwidth, this con- 
volution  operation will spread that power into adjacent f r e  
quency regions. This phenomena,  termed leakage, is a come 
quence of the tacit windowing inherent  in  the  computation 
of the periodogram. 

In addition to the distorting effects of leakage on the spectral 
estimate, leakage has a  detrimental  impact on power estima- 
tion and detectability of  sinusoidal components [ 201 1 ,  [ 2241, 
[ 2341. Sidelobes from  adjacent  frequency c e b  add in  a con- 
structive or destructive manner to  the main iobe of a response 
in another  frequency cell of the  spectrum, affecting the esti- 
mate of power in  that cell. In extreme cases, the sidelobes 
from  strong  frequency  components can mask the main lobe of 
weak frequency  components  in  adjacent cells, as illustrated 
in Fig.  3.  Sidelobes characteristic of the sin nflnf function 
(the transform of a rectanguh timedomain window) are 
evident in this illustration. 

Data  windowing is also the  fundamental  factor that deter- 
mines the  frequency resolution of the periodogram. The con- 
volution of the window transform  with that of the actual signal 
W o r m  means that  the most  narrow spectral response of the 
resultant transform is limited to  that of the main-lobe  width of 
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Fig. 3. mustration of weak signal msaking by adjacent strong signals 

when using paiodogrun spectrum analysis. Number o f  sample8 used 
in spectra (.)-(e) was 16. (a) PSD of a  single  sinusoid of amplitude 
unity, fractional sampling frequency 0.15, and initial phase 45’. 
@) FSD (dative  to previous PSD level) of a  single sinuroid of ampli- 
tude 0.19, fractional sampling frequency 0.24, and initid phase 162’. 

weaker signal frequency location. 
(c) Combined signal FSD-note that there is Little response at  the 

the window transform,  independent of the data. For a rect- 
angular  window, the main-lobe width  between 3dB levels (and 
therefore, the resolution) of the resulting (sin Irf)/frf transform 
is approximately  the inverse of the observation  time of NAt 
seconds. Other windows  may  be  used, but  the resolution will 
always  be proportional t o   1 / N k  Hz. Leakage effects due to 
data windowing can be reduced by the selection of  windows 
with nonuniform weighting.  Harris [go] has provided a good 
summary of the merits of various windows. Nuttall [ 1821 
provides a correction to the sidelobe behavior for some of the 
windows  described  by  Harris. Other references are [ 12 I ,  (6 1 I ,  

[ 161 I ,  [ 2241, [260], [ 2731. No attempt is made here to 
summarize the relative merits of various  window functions. 
The price  paid for a reduction in the sidelobes is always a 
broadening in the main lobe of the window transform, which 
in turn means a decrease in the resolution of the spectral 
estimate. 

There is a common  misconception  that zero-padding the 
data  sequence  before  transforming will improve the resolution 
of the periodogram. Transforming a data set with zeros only 
serves to interpolate additional PSD  values within  the fre- 
quency interval - 1/( 2At) < f < 1/(2At) Hz between those 
that would  be obtained  with a non-zero-padded transform. 
Fig. 4 shows  periodograms of an  N-point  data set with  no  zero 
padding, data  padded  with  N zeros, 7  N zeros, and 3 1 N zeros. 
In each  case, the additional values of the  periodogram, com- 
puted by an FFT applied to the zero-padded data set, fill in 
the  shape of the  continuous-frequency periodogram as defined 
by  expression (2.17). In  no case  of zero padding,  however, is 
there an improvement  in the fundamental  frequency resolution 
(reciprocal of the  measurement interval). Zero padding is 
useful for  1) smoothing  the  appearance of the periodogram 
estimate via interpolation, 2)  resolving potential ambiguities as 
illustrated in Fig. 4, and 3) reducing  the  “quantization” error 
in the accuracy of estimating the frequencies of spectral peaks. 
Mathematically, a 2N-point DFT of a 2N-point sequence 
X O ,  * ’  ,X2N-1  is 

X, =Af x ,  exp(-j2mn/2N) (2.21) 
2 N -  1 

n =O 

form=0,1, . . . ,2N-l. .   If thedatasethadbeenzeropadded 
with  N zeros, x ,  = 0 for n = N, * * * , 2N - 1, then (2.21) 
becomes 

N -  1 
X, = At x x ,  exp 

n =o 

which is the same as the N-point  transform (2.71, but evaluated 
over the interval -1/(2At) < f <  1/(2At) at twice as many 
frequencies as (2.7). By eliminating the operations  on zeros 
introduced by zero padding, or pruning as it is called, a more 
efficient FFT algorithm is possible [ 1481. 

In  summary, the  conventional BT and periodogram a p  
proaches to  spectral estimation have the following  advantages: 
1) computationally efficient if only  a few lags are needed 
(BT) or if the FFT is used (periodogram), 2)  PSD estimate 
directly proportional to the power  for sinusoid  processes,  and 
3) a good model  for some applications (to be  explained  in  more 
detail in the  next section). The disadvantages  of  these tech- 
niques are: 1) suppression of  weak  signal main-lobe  responses 
by strong signal sidelobes, 2)  frequency resolution limited by 
the available data  record duration, independent of the  charae 
teristics of the  data or its SNR, 3) introduction of distortion 
in the spectrum  due to sidelobe leakage, 4) need for some sort 
of pseudo ensemble  averaging to obtain statistically consistent 
periodogram spectra, and 5 )  the appearance  of negative  PSD 
values with  the BT approach when  some autocorrelation 
sequence estimates are used. 
C. Modeling and the Parameter Identification Approach 

At this point, we shall depart  from  the traditional perspec- 
tive  of spectrum analysis as presented in the last section. The 
conventional  approach used FFT operations on  eithm win- 
dowed data or windowed lag estimates.  Windowing  of data or 
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Fig. 4. Impact of zero  padding  the  periodogram to interpolate  the  spec- 

tral shape and to  resohe ambiguities.  The  spectra  were  estimated us- 
ing  the  same 16 samples of  a  process  consisting of three  sinusoids of 

phases OD, 90°, OD, respectively.  (a) N o  zero  padding;  ambiguities are 
fractional  sampling  frequencies 0.1335,  0.1875,  0.3375 and  initial 

(c) Quadruple  padding; smoothest spectrum seen.  (d)  32-times pad- 
present  in  the  spectrum. (b)  Double padding;  ambiguities  resolved. 

ding;  envelope is approximation to continuous  Fourier  transform. 

lags makes  the implicit assumption that  the unobserved data 
or lag  values outside the window  are zero, which is normally 
an unrealistic assumption. A smeared spectral estimate is a 
consequence of the windowing. 

Often one has more knowledge about  the process from which 
the data samples  are taken,  or  at least is able to make a more 
reasonable assumption other  than to assume the  data is zero 
outside the window. Use  of a priori information (or  assump 
tions) may permit selection of an exact model for  the process 
that generated the data samples, or at least a model that is a 
good approximation to $e actual underlying process. It is 
then usually  possible to obtain  a  better spectral estimate based 
on  the model by determining the parameters of the model 
from the observations. Thus spectrum analysis, in  the  context 
of modeling,  becomes a three step procedure. The first step is 
to select a  time series model. The second step is to estimate 
the parameters of the assumed model using either  the available 
data samples or autocorrelation lags (either known or esti- 
mated from the data). The third step is to obtain  the spectral 
estimate by substituting the estimated model parameters into 
the theoretical PSD implied by the model. One mqior moti- 
vation for the  current interest in the modeling approach to 
spectral estimation is the higher frequency resolution achiev- 
able with these modem techniques over that achievable with 
the traditional techniques previously  discussed. The degree  of 

improvement in resolution and spectral fidelity, if any, will be 
determined by  the ability to fit  an assumed model with a few 
parameters to the measured data. The selection of a model 
for the 'spectral estimate is intimately tied to estimation and 
identification techniques employed in linear system theory 
[271],  [272]. 

To illustrate the modeling viewpoint of spectral estimation, 
the discrete periodogram PSD estimate (2.18) will be shown to 
be equivalent to a least squares fit of the data to a harmonic 
model, namely the discrete Fouiier series. The least s q u a r e s  
fit to a Fourier series is well known [28 1. Only the essential 
ideas are presented here. If N samples XO, * - , XN- 1 of a 
continuous-time process x ( t )  are  modeled by a discrete se- 
quence 2n composed of N complex sinusoids of arbitrary 
frequencies fo, * * - , fN - 1, then 

x^(nAt) =Gn = a, exp (j21rf,nAt) (2.23) 

for n = 0, , N -  1. Thus the signal x ( t )  over the interval 
NAt seconds is represented with periodic functions, whether 
or  not x ( t )  is itself cyclic. The weights a,, to be determined, 
are  assumed to be complex-valued for generality. The N terms 
of (2.23) can  be  expressed in matrix form as 

2 =@A (2.24) 

N- 1 

m = O  
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where 

X =  A [ xN- A '01, 1 A = [  '0' 
aN- 1 

1 r 1 1 1 1 ... 

and X,  = j27rfiAt. Given the N frequencies f ,  , the  amplitude 
vector A determined by  minimizing the  total  squared estima- 
tion error, 

(2.25) 
n =o 

is provided  by the well-known solution 

A = (@@)-WX (2 .26)  

where X is the  data  vector 

r x0 1 

and H denotes  complex  conjugate transpose. 
The  Fourier series fit selects the  N sinusoidal frequencies to 

be the preassigned, harmonically related frequencies f ,  = 
m A f  Hz,  where Af = l/NAt.  It is well known [ 2 8 ]  that such 
a selection of harmonic  frequencies makes  each column  (row) 
vector of @ orthogonal to all other  column  (row) vectors so 
that 

(2.27) 

where Z is the  identity matrix. The  amplitude  vector A is then 
given  by 

A=-@X 
1 

N 
(2.28) 

or 

1 N-1 
a, = - x, exp (- j 2 m n / N )  

N n = o  

for m = 0, * , N - 1. The power of the sinusoidal component 
at  the preassigned frequency f ,  is 

X, exp ( - j2nmn/N) (2.29) 

which is identical to expression (2.20).  'Thus  the discrete peri- 
odogram spectral estimate may be viewed as a least squares fit 
of a harmonic  set of complex sinusoids to  the data. 

The case  where frequencies are not preselected and are not 
necessarily harmonic is treated in Section 11-J, which  provides 
a discussion  of  Prony's method.  The  harmonic  model preas- 
signed the  frequencies and number of sinusoids so that only 
estimation of the sinusoidal powers was  necessary. The non- 
harmonic  model of Prony's method will require estimation of 
not only the powers, but also the  number of  sinusoids present 
and their frequencies. Another aspect  of the harmonic  model 
that is noteworthy is the fact  that noise is not accounted  for 
in the model.  Any noise present  must also be modeled  by the 

harmonic sinusoids. Thus, to  decrease the fluctuations due to 
noise, one  must average Over a set of periodograms  made from 
the data. 

One key feature of the modeling approach to spectral esti- 
mation that differentiates it  from  the general identification 
problem is that  only the  output process of the  model is avail- 
able for analysis; the  input driving process is not assumed 
available as it is for general  system identification. 

One of the promising aspects of the modeling approach to 
spectral estimation is that one  can  make  more  realistic  assump- 
tions concerning  the  nature of the measured  process outside 
the  measurement interval, other  than  to assume it is zero or 
cyclic. Thus  the need for window functions  can be eliminated, 
along with their distorting impact. As a result, the improve- 
ment over the  conventional FFT spectral estimate can be quite 
dramatic, especially for short data records. 

D. Rational Transfer Function Modeling  Methods 
Many deterministic and stochastic discrete-time  processes 

encountered  in practice are  well approximated by a rational 
transfer function model. In this model, an input driving  se- 
quence {nn}  and the output sequence {x,} that is to model 
the  data are related by the linear difference equation, 

9 P 
X, = blnn-I - a k x n - k .  (2.30) 

1=0 k = l  

This most general linear model is termed an  ARMA model. 
The interest in these models stems  from their relationship to 
linear filters with rational transfer functions. 

The system function  H(z) between the  input n,  and output 
x, for  the ARMA process of (2 .30)  is the rational expression 

(2.3 1) 

where 
P 

A(z) = z - transform of AR branch = a,z-, 
m = o  

a 
B(z) = z - transform of MA branch = 2 b,z-,. 

m = o  

It is well known  that the power  spectrum at the  output of a 
linear fdter, PJz), is related to the power spectrum of the 
input stochastic process, Pn(z), as follows: 

(2 .32)  

Expression (2 .32)  is normally  evaluated  along the unit circle, 
z = exp (j27rfAt) for -1/(2At) < f < 1/(2At).  Often  the 
driving  process is assumed to be a white-noise  sequence of zero 
mean  and  variance 0'. The PSD  of the noise is then $ A t .  
(Note  that we  have included  the At factor in the expression for 



1388 PROCEEDINGS OF THE IEEE, VOL. 69, NO. 11, NOVEMBER 1981 

power spectral density of the noise so that Px (exp [ j2nfAtl), 
when integrated over -1/2At < f < 1/2At, yields the  true 
power of an analog signal). The PSD of the ARMA output, 
process is then 

~ A R M A ( ~ )  = %(f) = 0'A.t I%(f)/Q(f) I' (2.33) 

where Bl.(f) = A(exp [j2nfAtl) and %(f) = B(exp [j21rfAt]). 
Specification of the parameters {ak) (termed the autoregres- 
sive coefficients), the parameters { b k }  (termed  the moving- 
average coefficients), and u' is equivalent to specifying 
the spectrum of the process {x,} .  Without loss of generality, 
one can assume a0 = 1 and bo = 1 since any filter gain can be 
incorporated into 2 .  

If all the {ak} terms except a0 = 1 vanish, then 
a 

(2.34) 

and the process is strictly a moving  average  of order q ,  and 

= u 2 b  I W )  1 2 .  (2.35) 

This model is sometimes termed an  all-zero model [2661, 
If all the {b i } ,  except bo = 1, are zero, then 

P 
x , = -  a k x , - k + n ,  (2.36) 

k = l  

and the process is strictly an autoregression of order p .  The 
process is termed AR in that  the sequence x, is a linear regres- 
sion on itself with n,  representing the error. With this model, 
the present value of the process is expressed as a weighted 
sum of past values plus a noise term. The PSD is 

(2.37) 

This model is sometimes termed an  all-pole model. 
The Wold decomposition theorem [ 2661 relates the ARMA, 

MA, and AR models.  Basically, the theorem asserts that any 
stationary ARMA or MA process of finite variance can be 
represented as a unique AR model of possibly infii te order; 
likewise,  any ARMA or AR process can be represented as a 
MA process of possibly infii te order. This theorem is impor- 
tant because if  we choose the wrong model among the  three, 
we may still obtain a reasonable approximation by using a high 
order. Thus an ARMA model can be approximated by an AR 
model of higher order. Since the estimation of parameters for 
an AR model results in linear equations, as will  be shown, it 
has a computational advantage  over ARMA and MA parameter 
estimation techniques. The largest portion of research effort 
on rational transfer function modeling  has therefore been con- 
cerned with the AR model. 

E. Autoregressive PSD Estimation 
Introduction: Since this section is detailed, reflecting the 

extensive research on this PSD estimation method,  it is worth- 
while to briefly outline the material to be presented. The 
Yule-Walker equations are f i t  derived. They describe the 
linear relationship between the AR parameters and the auto- 
correlation function. The solution of these equations is pro- 
vided  by the, computationally efficient Levinson-Durbin algo- 
rithm,  the details of which reveal some fundamental properties 
of AR processes. 

Next, the relationship between AR modeling, linear pre- 

diction theory, and maximum entropy spectral estimation 
(MESE) is examined. Selection of the AR model order and 
the associated AR parameters is then addressed. Included in 
the discussion  are batch estimation techniques based upon 
linear prediction theory and sequential estimation methods 
based on recursive least squares and adaptive algorithms. 
Tradeoffs between the various approaches are noted. 

Finally, some limitations of AR spectral estimation that re- 
duce its applicability in practice are described. These involve 
the degrading effect of observation noise, spurious peaks, and 
some anomolous effects which occur when the data are domi- 
nated by sinusoidal components. Some techniques for reducing 
these effects are presented. 

Yule-Walker Equations: If an autoregression is a reasonable 
model for  the data, then  the AR power spectral density esti- 
mate based on  (2.37) may  be rewritten as 

I D  I2 
(2.38) 

ak exp  (-j2nfkAt) = l l + z  k= 1 

Thus, to estimate the PSD one need only estimate { a l ,   a 2 ,  * - , 
u p ,  u'}. To do this, a relationship between the AR parameters 
and the autocorrelation function  (known  or estimated) of x ,  is 
now presented. This relationship is known as the Yule-Walker 
equations [ 3  1 I . The derivation proceeds as follows: 

Since H(z)  is assumed to be a stable, causal filter, we have 

= 2 hfU26k+ 1 
I =o 

= $h_*k 

={ 0, 
fork>O 

h&?, fork = 0. 

Note that 6, is the discrete delta function, i.e., 6, = 1 if 
rn = 0 or 0 if rn # 0. But ho = limz+OD H(z)  = 1, and therefore, 

2 alR,(k - I), fork > O  

R,(k) =( ~ 

D 
(2.39) 

Expression (2.39) is the Yule-Walker equations. To determine 
the AR parameters, one need only choose p equations from 
(2.39) for k > 0, solve for ((11, (12, * * , a p ) ,  and then  find OZ 
from (2.39)  for  k = 0. The set of equations which require the 
fewest lags  of the autocomelation function is the selection 
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k = 1,2,  * * , p .  They  can be  expressed  in matrix  form as 

1389 

(2.40) 

Note that  the above autocorrelation  matrix, R,, is Hermitian 
(RZ = R,) and it is Toeplitz since the  elements along  any 
diagonal are identical. Also, the  matrix is positive d e f i t e  
(assuming x, is not  purely  harmonic) which follows  from the 
positive definite property of the  autocorrelation  function [ 4  1 ] , 
(81 1 ,  [921. 

It should be noted that  (2.40)  can also be augmented to 
incorporate  the 2 equation, yielding 

[ R,(1) R,(O) . * '  R, ( - (p -  1))/ 11 = E] R,(O) R n ( - l )  * * * R,(-P) 

&x@) R,@ - 1) ' .  * RXX(O) 'IP 

(2.41) 

which  follows from (2.39). This form will  be  useful later. 
Thus, to determine  the AR parameters and uz, one must 
solve (2.41)  with  the p + 1  estimated  autocorrelation lags 
Rxx(0), - , Rxx(p) and use R,(-m) = R&(m). 

Levinson-Durbin Algorithm [56] ,  [60],  /142], 12701: The 
Levinson-Durbin algorithm provides  an efficient solution for 
(2.41). The algorithm requires only  order p z  operations, de- 
noted o ( p 2 ) ,  as opposed to 0Q3) for Gaussian elimination. 
Although  appearing at first to be just an efficient algorithm, it 
reveals fundamental properties of  AR  processes. The algo- 
rithm  proceeds recursively to compute  the  parameter sets 

that an additional subscript has been  added to  the AR coeffi- 
cients to denote  the order. The final set at order p is the 
desired solution. In particular, the recursive algorithm is ini- 
tialized by 

{ ~ l l , U ~ } , { ~ 2 1 , ~ 2 2  , ~ } , . . . , { a p l , a ~ , . . .  , a p p ,  .'PI. Note 

all  = -R,(l)/R,(O) (2.42) 

4 = ( 1  - lalllZ)R,(0) (2.43) 

with  the  recursion  for k = 2,3, * , p given  by 

k-1 
akk = - Rxx(k) + a k - l , i R , ( k  - 1 )  k-1 (2.44) [ i=1 Ii. 
a k i = u k - l , i + a k k a ~ - ~ , k - i  (2.45) 

.'k - lakk12)$-1 * (2.46) 
It is important to  note that { a k l ,  u h ,  - , a&k, o',}, as ob- 

tained above, is the same as would  be obtained by  using (2.41) 
for p = k. Thus the Levinson-Durbin algorithm also provides 
the AR parameters for all the  lower  order AR model  fits to 
the'data. This is a useful property when  one does not know 
u priori the correct model order, since one can  use (2.42)- 
(2.46) to generate successively higher  order models until  the 
modeling error a: is reduced to a desired  value. In particular, 
if a process is actually an  AR@)  process (an AR process of 
order p ) ,  then a p + l , k   = a p k  for k = 1,2, * , p and hence 
u p + l , p + l  = 0. In general for an AR(p) process, a&k = 0 and 
U: = U$ for k > p .  Hence, the variance of the excitation noise 

TABLE I 

HARMONIC P~oc~sses)  
SUMMARY OF AR PROCESS PROPERTIES (EXCLUDING PURELY 

0 A u t o c o r r e l a t i o n   m a t r i x   i s   p o s i t i v e   d e f i n i t e :   X ' R x x X ~ O  

@ R e f l e c t i o n   c o e f f i c i e n t  sequence s a t i s f i e s  lKil * 1  f o r  

0 Zeros o f  A(z)  l i e   w i t h i n   u n i t   c i r c l e :   I z i l c l   f o r  

0 P r e d i c t i o n   e r r o r  powers r r m o t i c a l l y  decrease: 

f o r   a l l  X vectors 

i=l,2,. . . , p  

i=1,2, ..., p 

+ u 2 t  2 ... '-u 2 2 0  
P 

is a  constant for a  model  order equal to or greater than the 
correct order. Thus  the  point at which 4 does not change 
would appear to be a good indicator of the correct model 
order. It can  be &own that la&kl< 1, so that u : + ~  Q u: [91, 
[41 I .  This  means that 4 f i t  reaches its minimum at  the 
correct model order. This point is discussed further  under  the 
topic of model  order  determination. 

The parameters {a l l ,  u z z ,  * - - , u p p }  are often called the re- 
flection coefficients and are  designated as {K,, K z ,  - * * , K P } .  
They have the  property  that for {R,(O), R,( l), - , R,@)} 
to be a valid autocorrelation  sequence, i.e., the  autocorrelation 
matrix is positive semidefinite, then  it is necessary  and  suffi- 
cient that lakkl= IKkl < 1 fork = 1,2, * . * , p [41]. Further- 
more, a necessary and sufficient condition  for the poles  of 
A ( z )  to be on or within  the  unit circle  of the z plane is IKkIQ 1 
for k = 1, 2, - * , p  [41], [ 1401. It should be noted  that if 
l K k l =  1 for some k, then the recursion  (2.42)-(2.45) must 
terminate since o', = 0. The process in this case is purely 
harmonic (consists only of  sinusoids).  These properties are 
summarized in  Table I. 

The problem of  AR parameter identification is closely  re- 
lated to  the theory of h e a r  prediction. Assume x, is an 
AR@) process.  If  one  wishes to  predict x, on the basis  of the 
previous p samples [92], 

P 
2, = -  a k x n - k  (2.47) 

k= 1 

then (a1 , az, * * * , ap}  can  be  chosen to minimize the pre- 
diction error power Q p  where 

Qp =E[IXn - ;,IZ I .  (2.48) 

By the  orthogonality principle [ 1871 

E [ ( x ,  - 2,)x;l = 0, f o r k = n -  1 ; . . , n - p  

or P 
R,(k) = - a$,(k - 21, fork = 1, 2: * * * , p .  

i=1  

(2.49) 
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Fig. 5 .  Lattice formulation of prediction error (whitening, or inverse) 
fdter. 

The minimum prediction error power is 

P 
Qpmin =E[(X,  - x^n)XiI  ‘ R J O )  + Q k R u ( - k ) .  (2.50) 

k=1 

These equations are identical to (2.39). Thus it must be true 
that Qk = apk for k = 1, * . , p and QPmin = ug, so that  the 
best  linear predictor is just 2, = -Zkp= a p k x ,   - k .  The error 
sequence,  although  uncorrelated  with  the linear estimate, is 
not necessarily a  white process (it will  be  if x ,  is a A R ( p )  
process).  In the limit as p +. 00, the error sequence  becomes 
white. 

eters for  the  optimum  kth-order linear predictor and the corre- 
sponding minimum prediction error power,  respectively. 
Therefore, A R  parameter identification and  linear prediction 
of an AR(p)  process yield identical results  and the  theory of 
one is applicable to  the  other. 

The  theory of linear prediction lends  an important interpre- 
tation to the Levinson-Durbin algorithm. Denote the predic- 
tion error for  a pth-order linear predictor as epn .  Then, using 
(2.45) 

Note  that {akl ,  a b ,  * , Q k k }  and 0: COl’lStitUte the param- 

P 
ep?l + apkxn-k (2.5 1) 

k= 1 

D - 1  

k = l  

where 
D 

bpn = x n - p  + a;kxn-p+k. ( 2 . 5 3 )  
k= 1 

The  term b,, is the backward prediction error, i.e., the error 
when one  attempts to “predict” x , - p  on  the basis of samples 
x , - ~ + ~ ,  * * , x , .  It is seen that  the  predictor coefficients for 
the backwards predictor are complex  conjugates of those of 
the  forward predictor, which is a consequence of the stationary 
autocorrelation  function  assumption [ 4 1 ] . Similarly, it can  be 
shown 

The relationships of (2.52) and (2.54) give rise to  the so called 
lattice filter structure shown in Fig. 5 [ 1461.  Note that  the 
transfer function of the entire filter is just 

k = l  

which is the inverse of H(z)  = l/A(z). This  follows from 
(2.5 1). This fiiter is termed either the “inverse” filter or “pre- 
diction error” filter. The lattice fiiter interpretation of the 
Levinson-Durbin  algorithm leads to an important  time recur- 

sive formulation for estimating the A R  parameters. By up- 
dating the reflection coefficients using (2.52) and (2.54), the 
A R  parameters are obtained via the order  recursion (2.45). 
More details are presented  under the  topic of sequential esti- 
mation of A R  parameters. 

If one minimizes E(lep,12), as given  by (2.52), with respect 
to K,, one  obtains 

As stated previously, both epn and b have the same statisti- 
cal properties, so that (2.55) can be wntten as pn 

Thus K p  is the negative  of the normalized correlation coeffi- 
cient between e p - l , n  and b p - l , n - l , ~ ~  we must have lKpl < 1. 
In  the statistical Literature, - K p  is known as a partial correla- 
tion coefficient since it is the normalized correlation between 
x ,  and x, - ,  with the correlation of x , , - l ,   x , -2 ,  * * , 
removed [ 3 1 1. 

Maximum  Entropy  Spectral  Estimation  [41],  [62], [78], 
[171]. [I 721, [ 2 0 5 ] .  [215], [248] ,   [249] :  MESE is based 
upon an extrapolation of a segment  of a  known autocorrela- 
tion function for lags which are not known.  In this way the 
characteristic smearing of the estimated PSD due to  the trun- 
cation of the  autocorrelation  function can  be  removed. If  we 
assume {R,(O), R,(l), * * * , R,(p)}  are known,  the ques- 
tion arises as to how {R,(p + l),  R,(p + 2), * - } should be 
specified in order to guarantee that  the entire autocorrelation 
sequence is positive semi-defite. In general, there are an in- 
finite number of possible extrapolations, all of which  yield 
valid autocorrelation functions. Burg [371, [411 argued that 
the  extrapolation  should be  made so that  the time series  char- 
acterized by the extrapolated  autocorrelation  function has 
maximum entropy.  The  time series  will then be the most.ran- 
dom one which  has the known  autocorrelation lags for  its f i t  
p + 1 lags. Alternately, the power spectral density is the one 
with  the flattest (whitest) spectrum of all spectra for which 
{R,(O), R,( l),  * * , R,(p)} is equal to  the known lags. The 
resultant spectral estimate is termed  the maximum entropy 
spectral estimate. The rationale for  the  choice of the maxi- 
mum entropy criterion is that it imposes the fewest constraints 
on the unknown  time series  by  maximizing its randomness, 
thereby  producing  a minimum  bias solution. 

In particular, if one assumes a Gaussian random process, 
then the  entropy  per sample is proportional to 

(2.57) 

where yx( f )  is the PSD  of x, . T X ( f >  is found  by maximizing 
(2.57) subject to  the constraints that  the ( P  + 1) known lags 
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satisfy the Wiener-&chin relationship [ 621, 

i p A t  1 '3'Af) exp ( - P f n A t )  d f = R , , ( n ) ,  
-1lzAt 

for n = 0, 1, - , p .  (2.58) 

The solution is found by the Lagrange multiplier technique 
and is 

$At 

11 + f apk exp ( - j2nFAt)  
!!sf 1 = (2.59) 

k = l  

where {up,, * e ,  app} and 4 are just the  pth-order  predictor 
parameters and prediction error power, respectively,  With 
knowledge  of {RJO),  R,.Jl), * * , R,(p)}, the MESE will 
be equivalent to an AR PSD, with Y x ( f )  given by (2.59) and 
based on parameters  found by  solving (2.41). The maximum 
entropy relationship to AR PSD analysis is only  valid for 
Gaussian random processes  and known  autocorrelation lags. 

AR Autocorrelation  Extension: An alternative representa- 
tion for (2.38) is 1591 

$ A t  
?A, (f) = 

11 + f Upk eXp (-jZnJkAt) 
k = l  l 2  
m 

= At r,(n) exp (-j2nfnAt) (2.60) 
n =-  - 

where 

From this, it is easy to see that  the AR PSD preserves the 
known lags and recursively extends the lags beyond the win- 
dow  of known lags.  The AR  PSD function (2.60) summation 
is identical to  the BT PSD function (2.13) up to lag p ,  
but  continues with  an infinite extrapolation of the  autocor- 
relation function rather than windowing it  to zero. Thus AR 
spectra do  not exhibit sidelobes due to windowing. Also, it is 
the implied extrapolation given  by (2.61) that is responsible 
for the high resolution property of the AR spectrd estimator. 

AR Parameter  Estimation: In most practical situations, one 
has data samples rather than  known  autocorrelation lags  avail- 
able for  the spectral estimation  procedure. To obtain reliable 
estimates of the AR parameters,  standard statistical estimation 
theory can  be  used.  The  usual estimator for  a nonrandom set 
of parameters is the maximum likelihood estimator (MLE). 
However, the  exact solution of the MLE for  the  parameters of 
an AR(p) process is difficult to obtain [ 3 11.  If N >> p ,  an 
approximate MLE can  be found which amounts to nothing 
more than solving the Yule-Walker equation  with  the  autocor- 
relation function replaced  by a suitable estimate. For long data 
records, this AR parameter  estimator  produces good spectral 
estimates. For short  data records, which are more commonly 
encountered  in practice (and for which the periodogram  spec- 
tral estimate has the  poorest resolution), the use  of the Yule- 
Walker approach  produces  poor resolution spectral estimates. 

1391 

To improve  upon  the  approximate MLE approach  for  short 
data sets, a variety of batch  estimation  techniques based on 
least squares  techniques have  been proposed that operate on a 
block of data samples. For longer  data sets, a variety  of  se- 
quential estimation  techniques are  available for  updating  the 
AR estimates as  new  data  are  received.  These techniques are 
especially  useful for tracking processes that slowly  vary with 
time. The  next  two  topic areas  cover batch and sequential 
AR estimation  methods. 

Many additional references on  the statistical properties of 
AR spectral estimates may  be found in [ 131, [ 1001, [ 1161, 
[ 1861, [ 2 121.  Some  references  dealing with  frequency estima- 
tion accuracy of AR spectral estimates are [ 1241, [212], 
[239].  It has.  been  empirically shown by Saka i  [ 2121 that  the 
frequency variance  of an AR spectral estimate is inversely pro- 
portional to  both  the data  length  and the square of the SNR; 
Keeler [ 1241  has  empirical  evidence that  the variance is inverse 
to  both  the length and the SNR (rather  than  the  square of 
SNR). 

Batch  Estimation of the AR Parameters: Although  the Yuie- 
Walker equations could be  solved  using  lag estimates, several 
least squares estimation  procedures are available that operate 
directly on  the data to yield better AR parameter estimates. 
These techniques  often  produce better AR spectra than that 
achievable with the Yule-Walker approach. Two types of least 
squares estimators will  be  considered. The f i t  type utilizes 
forward linear prediction  for the estimate, while the second 
type  employs  a  combination of forward and  backward  linear 
prediction. 

Assume the data  sequence xo,  * - , XN - is used to find the 
pth-order AR parameter estimates. The foward  linear  predic- 
tor will  have the usual form 

2, = - 2 upkxn -k. (2.62) 
k = l  

The  prediction is forward in the sense that  the  prediction  for 
the current data sample is a weighted  sum  of p previous sam- 
ples. The  forward linear prediction error is 

epn = x, - x, = 5 apkxn-k (2.63) 
k = O  

where 

upPo = 1. 

We may compute epn for n = 0 to n = N + p - 1 if one assumes 
the terms  outside the measurements are zero, i.e., x,, = 0 for 
n < 0 and n > N -  1. There is an implied  windowing  of the 
data  sequence in order to extend  the  index range for epn from 
0 to N + p - 1. Using a  matrix  formulation  for (2.63), 

E + 
e0 

eP 

eN -1 

eN + p  - 1, 

1 (2.64) 
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or 
E = XA. 

The  prediction error energy is simply 

P 

(2.65) 

The  summation range for &, is purposely  not specified for  the 
moment. To  minimize gP, the derivatives  of 6, with respect 
to  the {apk) aie set to zero  and  the resultant equations solved 
for the AR parameters. The result is 

5 a p k ( x x n - k x n - i  =o,  f o r l < i < p  (2.67) 
k =  0 n 9 

with minimum error energy, 

& p =  P a p k ( ; x n - k d ) .  
(2.68) 

Expressions (2.67)  and (2.68) can  be reformulated in normal 
equation  form 

k = o  

(2.69) 

for which four special indexing ranges 1 = 1 , 2 ,3 ,4  are selected, 
as indicated in (2.64). Note that (2.69) has the same structure 
as (2.41); however, the  data  matrix  product  (XFXl) is not 
necessarily Toeplitz as are the Yule-Walker equations. 

If the  data  matrix XI is selected, the normal (2.69) are 
termed the covariance equations,  often  encountered in LPC of 
speech  (see  Makhoul [ 1441 ). If the data  matrix X, is selected, 
the resulting normal  equations are  called autocorrelation  equa- 
tions since the product  matrix (X?X,)/N reduces exactly to 
the Yule-Walker equations, for which the biased autocorrela- 
tion estimator (2.16) has been used in lieu of the  known  auto- 
correlation function. Note  that  a  data window  has  been as- 
sumed for this case.  This data window reduces  the resolution 
of AR spectra estimated  with  data  matrix X,, as will be  illus- 
trated in Section 111.  If the  data  matrix X, is selected, the  nor- 
mal equations are termed the prewindowed normal  equations 
due to  the zero value assumptions made for  the missing data 
prior to xo. If the  data  matrix X, is selected, the normal  equa- 
tions are termed  the  postwindowed  normal  equations since a 
zero  data  assumption is made for  the  data  beyond XN - 1. 

It would appear that only the  data  matrix X, will yield nor- 
mal equations  with  Toeplitz  structure to permit an efficient 
recuIsive solution (namely, the Levinson recursion); as out- 
lined. in Fig. 6. However,  even though  the  product  matrix 
(X?&)  may not be Toeplitz, each of the  four  data matrices  Xi 
have Toeplitz structure. This property allows one to develop 
recursive  algorithms with o ( p 2 )  operations in each of the  four 
cases. Morf et al. have  provided the details of the recursive al- 
gorithms  for the covariance  case [ 1631, [ 1641, [ 1671, [ 1691 
and for  the prewindowed  case [66], [ 1681. The interested 
reader may consult these references for details of these alge 
rithms. They are not discussed in detail here because the for- 
ward and backward prediction approaches, to be  discussed 
next, yield better spectral estimates in  most cases. 

ESTIMATE AUTOCORRE. \ T I O N  
EQ,(2.15) 

I 

CALCULATE AR SPECTRUM 
t 

EQ.(2.38) 

Fig. 6. Summary of Levinson recursion algorithm for AR spectral 
estimation. 

Many problems  with  the  forward  only  prediction  approach 
to AR spectral estimation exist. The  autocorrelation  matrix 
(x,”x,) solution yields AR spectra with  the least resolution 
among these four AR least squares  estimates when the  data sa 
quence is short. The decrease in resolution is due to  the in- 
herent windowing in the  data  matrii X,. The  covariance ma- 
trix (XpXl) solution  produces AR parameters whose  resulting 
spectra have  been  observed  by  several authors [ 2271, [ 2281, 
[ 25 1 I to have  more  false  peaks and greater perturbations of 
spectral peaks from their correct frequency locations than 
other AR estimation approaches. The covariance normal equa- 
tions,  which are also used in  the  Prony  method (discussed in 
Section IIJ), lead to AR parameter estimates with greater 
sensitivity to noise. Spectral line splitting, the  placement of 
two or  more closely  spaced  peaks in  the‘spectrum where only 
one  should be present, has been  observed in all four  forward 
prediction cases  considered  here. The reasons for line splitting 
have  been documented by  Kay and Marple [ 1201. 

If the process is wide  sense stationary, the coefficients of the 
optimum backward prediction error filter are identical to  the 
coefficients of the optimum  forward  prediction error filter, 
but  conjugated and  reversed in time 1411.  The use  of the 
backward prediction errors when estimating the AR param- 
eters was introduced by  Burg [37],  [41]. 

The most popular  approach  for AR parameter  estimation 
with N data samples was introduced by  Burg in 1967. The 
Burg algorithm, separate and distinct from  the maximum  en- 
tropy viewpoint  discussed  earlier,  may be viewed as a con- 
strained least squares minimization. Assuming a wide  Sense 
stationary process, the  forward linear prediction error of (2.63) 
is defined  for p < n < N  - 1 ( p  is the predictor order) and  the 
backward linear prediction error is given by 

P 
bpn = 2 ap*kxn - p  + k  (2.70) 

k=O 

also for p < n < N - 1. Recall that aw is defined as unity,  the 
apk are the predictor pardieters at order p ,  the x,, are the  data 
samples, and the nonwindowed  prediction error range has been 
assumed. 

To obtain  estimates of the predictor  (or AR) parameters, 
Burg  minimized the sum of the forward  and backward  predic- 
tion error energies, 

N - 1  
G ~ . =  Iepn12 + IbpnI’ (2.71) 

n =P n = p  

N-1 

subject to  the constraint that  the AR parameters satisfy the 



KAY AND MARPLE: SPECTRUM ANALYSIS 1393 

INITIALIZATION 

E, = el,lz k = l  

= ZE, 

I 
INCREASE LEVINSON RECURSION 
ORDER BY 1 EQS.(2.45),(2.46) 

UPDATE PREDICTION ERRORS 
EQS.(2.52),(2.53) 

CALCULATE AR SPECTRUM 
€Q.(?.38) 

Fig. 7. Summary of Burg algorithm  for  AR  spectral  estimation. 

Levinson recursion 

a p k = a p - l , k + a p p a p * - l , p - k  (2.72) 
for all orders from  1 to p.  This constraint was motivated  by 
Burg's desire to ensure  a stable AR filter (poles within the  unit 
circle). By substituting the lattice recursion expressions (2.52) 
and (2.54) into (2.71), 6 ,  becomes a  function of only the un- 
known reflection coefficient app and  the  prediction errors 
at order  p - 1, which are assumed known.  Thus one  need 
only  estimate aii for i = 1, 2, * , p if (2.72) is used. Setting 
the derivative  of &i with respect to ail to zero  then yields 

N - 1  
- 2  b i * _ l , k - l e i - l , k  

qi = Ki = 
h k = i  . (2.73) 

N - 1  
( lb i -1 ,k -1  1' + le i - l ,k12)  

k = i  

Note  that f q i l <  1, which  may  be  easily shown using (2.73). 
Thus (2.72) and (2.73) together will guarantee  a stable all-pole 
fdter. A recursive relationship for the  denominator of (2.73) 
was found by  Anderson [ 101 

=DEN(i -  1) [ l  - 1q-1,~-112] 

- Ibi- tN-i12 - lq-1,i12. (2.74) 

Fig.  7 is an outline of the Burg procedure  for AR spectral esti- 
mation.  A  computational  complexity analysis indicates that 
3Np-   p2  - 2N-  p complex adds, 3Np-   p2  - N + 3 p  com- 
plex multiplications, and p real  divisions are required. Storage. 
of 3 N + p + 2  complex values is alsorequired  [9],  [57],  [91], 
[ 92 I. Multichannel  versions  of  Burg's algorithm  may be found 
in  [166],  [177],  [178],  [Mol,  [210],  [225]. 

The Burg algorithm has several problems associated with it, 
including spectral line splitting and biases in  the frequency es- 
timate. If one minimizesGp in (2.71) with respect to all the 
apk for k = 1, * * , p, then these problems can be mitigated. 
Ulrych and Clayton [25  1 I and Nuttall [ 1761 independently 
suggested this least squares  procedure  for  forward  and back- 
ward prediction  in which the  Lerinson  recursion constraint 
imposed  by Burg is removed. 

To obtain the  p normal  equations  for the LS (also called 

forward-backward) algorithm,  determine the minimum of &, 
by setting the derivatives of &p with respect to all the AR 
parameters apl through upp to zero.  This  yields 

(2.75) 

for i = 1, - , p ,  where apo = 1 by definition and 

for 0 < i, j < p. The minimum prediction emor  energy  may be 
determined to be 

Expressions (2.75) and (2.77) can be combined into  a single 
( p  + 1) by ( p  + 1) matrix expression 

RpAp = E, (2.78) 

where 

A, = I .  * I  

(2.79) 

Direct solution of (2.78) by  Gaussian elimination requires a 
computational  complexity  proportional to ob3). Barrodale 
and  Erickson [ 161  discuss such  a solution and its numerical 
stability. However, expression (2.79) has a s t r u c t u r e  that can 
be exploited to generate an algorithm of ob2) operations. 
Basically, R, can be  expressed as sums and  products of  Toe- 
plitz  and  Hankel matrices. This structure enabled  a recursive 
algorithm of o(p2)  to be  developed  (see  Marple [154]). A 
flowchart of the  algorithm may  be found in the same reference 
and is not provided  here  due to its complexity.  The LS 
algorithm is almost as computationally efficient as the Burg 
algorithm, requiring typically about  20  percent more computa- 
tions. The improvement  obtained  from  the LS approach over 
the Burg algorithm is well worth  the slight additional compu- 
tation. These improvements  include less  bias in the  frequency 
estimate of spectral components, reduced  variance in fre- 
quency estimation, and  absence of observed spectral line 

Sequential  Estimation of A R  Parameters: Three major a p  
proaches to time  updating the AR parameter estimates on a 
data sample  by data sample  basis are available. These are the 
r e c d v e  least squares  method, the gradient adaptive  approach, 
and sequential identification using a lattice filter. 

The  recursiveleastsquaresmethod  [14],  [20],  [211], [220] 
in appearance resembles a K h a n  filtering procedure. By 
eliminating the &, term  from  the  normal  equations (2.69), the 
least squares solution for  the AR parameter  estimate  vector 
A), for order  p is 

splitting[1411,[1541,[227]. 

where  an m subscript has been added to all the vectors and m a  
trices to indicate that  the time samples up to  index m are in- 
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cluded. The vector Y, is composed  of data samples, 

Y, = [x0] 

X r n  

and x, is a modified  version of data matrices . X 1  or X,, 

corresponding to  the covariance or prewindowed cases discussed 
under  batch processing methods. 

The  addition of a new time sample x, +1 can be accounted 
for by partitioning Y, + and X + as follows: 

whereHm+l=[xm...x,-p+l]. I f w e d e f r n e P , = [ ~ ~ ~ , ] - '  
and substitute the partitioned Y, + and x , + 1, then 

A 

Am+'  = P m + l r m + l  Ym+1 H 

= p m + l  [x ,HYm +a,H+lxm+11 

=pm+l[PilPmX,HYm  +H,H+lxm+l]. (2.81) 
A 

Noting that P, xzY, = Am and Pi' = P;'+ - Hi+ lHm + 1, 
then 

Am+'  =Pm+l[(pG1+l - H , H + 1 a m + 1 ) &  +H,H+~x,+~I 
A 

=Am +Pm+la,H+1(Xm+l - H m + l & ) .  
A 

(2.82) 

using  the  matrix inversion lemma, (A  t BCD)-' = A-' - A-lB 
(C-' +DA-'B)-'DA-',  then an alternative recursive formula- 
tion for P, + is 

P m + l  =(p~'+H,H+lHm+1)-' 

= P m  -prna,H+1(1 +Hm+lPmH,H+l ) - iHm+lpm 

=U-Km+lffm+1)Pm (2.83) 
where  by definition, 

Km+1 =PrnH,H+I(I +Hm+1PmH,H+1)-'. (2.84) 

The sequential recursion (2.82) then reduces to 

Am+1 = A m  +Km+l(Xm+I -Hm+,A^,>  
A h 

= A m  +Km+lep,m+l- 
A 

(2.85) 

Equations  (2.13)-(2.85) are similar in structure to a Kalman 
filter in which the  data  vector H, and data  matrix pm are 
similar to  the covariance vector and matrix assumed  available 
in  the Kalman formulation. In fact, the least squares  formula- 
tion presented  here could  be  modified to incorporate u pn'on' 
knowledge  of  any statistics available  concerning the linear pre- 
diction error noise statistics. 

The recursive  least  squares technique can be  applied to other 
parameter  estimation problems other  than this AR application, 
of on-line spectral estimation, as long as the model is linAear in 
the parameters [ 1701. In order to start the recursion, A0 and 
Po must  be  specified. If PO' is other  than  an all zero  matrix, 

then  the selection of io must b: made  carefully since the 2, 
estimate will be  biased toward Ao. This bias  can  be  removed 
by setting PO' to an all zero matrix,  but this requires an alter- 
native formulation of (2.84) and (2.85) in terms of PO' rather 

The update relationships in the least  squares recursion re- 
quire 0 ( p 3 )  operations  with  each new data point, which  may 
be formidable. An alternative approach  that requires o ( p )  
operations for each sequential update is the  adaptive linear 
prediction filter approach [81, [831,  (851,  [2431.  The adap- 
tive approach recursively estimates  the AR parameter  vector 
using a gradient technique 

than Po. 

Am+'  = A ,  - pVE(Iep,I') 
A A 

(2.86) 

where p is the  step size  and V denotes  the gradient. By 
substituting 

P 
epm '%n + apkxm -k 

k = i  

and taking expectations, then 

E(lepmlZ) = R,,(O) t ~ ~ R x x A ) n  + 2 Re ( i E r x x )  
where R,, is the  autocorrelation  matrix and r,, is the  autocor- 
relation vector rxx = (Rxx(l) - * - RxX(p))=. The  gradient  of 
Nep,  1') is 

VE(Iepm 1') = 2r,, + 2RxxA^,. (2.87) 

When the gradient technique converges,  VE(lepm 1') = 0 and 

r,, = -R,,A 

which is the same as the Yule-Walker equations (2.40). In 
practice, r ,  and R, are  unavailable, so instantaneous esti- 
mates  are substituted. This yields 

r,, +x,,,X;-'  where X;-' = [I: ] * m - 1  

Xm -p  

R,x-,X;-lX~-i.  

Noting that epm =xm +X,'- ' A ,  and using (2.87),  then 
(2.86) becomes 

A 

A A 

Am+1 = A m  - 2PepmX;,-l. (2.88) 

The above gradient formulation is called the least mean square 
(LMS) algorithm. It has a similar structure to (2.85), except p 
is fixed  whereas the gain Km + is variable. 

Convergence is guaranteed as long as the  constant pis selected 
between 0 and l/Xmm, where X,, is the maximum  eigen- 
value  of R,. The choice of p involves a  tradeoff  between rate 
of convergence of  E[&,] to A ,  and the  amount of steady- 
state variance (sometimes  termed  misadjustment) to be toler- 
ated  once convergence is achieved.  Thus the price  paid for  a 
much reduced  computational  burden over the recursive  least 
squares  approach is a slow  convergence requiring the need 
for a longer data record to achieve  reliable AR parameter 
estimates. 

In an  attempt to achieve the accuracy of the recursive  least 
squares technique and the computational savings  of the  adap 
tive  gradient techniques,  a  third  method has  been advocated 
based on the  lattice filter. However, the lattice recursive  rela- 
tionships update  only the reflection coefficients with o ( p )  
operations. If the AR parameter estimates are to be updated 
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with  each new data  sample,  then  the Levinson recursion (2.45) 
will need to be  used,  which requires o ( p 2 )  operations. Thus 
computational savings with the lattice technique are achievable 
only if the AR parameter  estimates are updated  infrequently 
rather than  with  each new  sample. 

A sequential algorithm  based on a lattice  structure may  be 
developed for each  of the least  squares techniques  presented 
under  the  batch  estimation  topic [ 1641, [ 1681. An illustra- 
tion of one  such algorithm based on Burg’s algorithm is given 
here. The reflection coefficient Kmn for order m and time in- 
dex n was determined in the Burg algorithm by computing 

Thus, (2.90)  in  combination  with (2.52) and (2.54) for m = 
1, * * e ,  p and  with initial conditions &n = bon =xn, form a se- 
quential time-update  algorithm for the reflection coefficients. 

AR Spectral Power Estimation: It has been  shown [ 1361 
that,  unlike  conventional  Fourier spectral estimates, the peak 
amplitudes  in AR spectral estimates are not linearly propor- 
tional to the power  when the  input process  consists  of sinu- 
soids in noise.  Lacoss [ 1361 has shown that  for high SNR, the 

location of the pole zi. Negative  power estimates can occur 
with this technique if peaks are very  close together. This a p  
proach is closely related to  the power estimation  procedure 
utilized in  the  Prony  method  presented in Section 11-J. 

Model Order  Selection /21] ,  [loo],  [ I I O ] ,  [114/, [133],  
[235], [237/, [238]: Since the best  choice  of filter order p 
is not generally known a pr ior i ,  it is usually  necessary in prac- 
tice to postulate several model orders. Based on these, one 
then  computes some error criterion that indicates which  model 
order to choose. Too low a guess for model order results in a 
highly smoothed spectral estimate. Too high an  order intro- 
duces spurious detail into  the spectrum. One intuitive approach 
would  be to construct AR models  of  increasing order  until  the 
computed  prediction error power  reaches a minimum.  How- 
ever, all the least squares estimation  procedures discussed in 
this paper have prediction error powers that decrease mono- 
tonically with increasing order p .  For example,  the Burg al- 
gorithm  and Yule-Walker equations involve the relationship 

G j  =&, - I [  1 - lajjl21. (2.93) 

As long as lqil’ is nonzero  (it must  be Gl),  the prediction er- 
ror power  decreases. Thus  the  prediction error power alone is 
not sufficient fo indicate when to terminate the search. 

Several criteria have  been introduced as objective  bases for 
selection of the AR model order. Akaike [ 11 -[ 71 has provided 
two criteria. His first criterion is the  fiial prediction error 
(FPE).  This criterion selects the order of the AR process so 
that  the average error for a one step prediction is minimized. 
He considers the error to  be the sum  of the power in the un- 
predictable (or innovation) part of the process  and a quantity 
representing the inaccuracies in  estimating the AR parameters. 
The FPE for an AR process is defined as 

FPEp = G ~  ( ) N + p +  1 
N -  p -  1 

(2.94) 

peak is proportional to  the square  of the  power,  although  the 
area under the peak is proportional to power.  One method where is the number Of data Note that (2*94) as- 
for obtaining an estimate of the actual power  of  real  sinusoids sumes One has subtracted the mean from the data* The 

[ 1081. The method works  best for high  SNR components in reflecting the increase in the uncertainty Of the estimate ’% Of 

the process. The AR  PSD  in z-transform  notation is the  prediction error power. The  order p selected is the  one  for 
which the FPE is minimum. The FPE  has  been studied  for a p  

from an AR spectn\m was  suggested  by Andenen  and  Johnsen  term in parentheses increases the FPE P approaches N ,  

(2.91) 

where 

P 
A@) = 1 + aPkz-’. 

k = 1  

If a Peak is at f i  in  the AR spectral estimate, Le., q = exp 
(i2nfi A t ) ,  then  the  estimated power is approximately 

Power ( f i )  = 2 x Real  Residue  of - at zi 
PAR (2 1 

z 

(2.92) 

where 

zi = Root of A ( z )  = exp (q + j2nfi)At. 

Note that it is assumed that  the peak occurs at  the angular 

plication by  Gersch and  Sharpe [ 731, Jones [ 1 1 1 J ,  Fryer et al. 
[691, and Ulrych and Bishop [2501. For AR  processes, the 
FPE  works fairly well.  However,  when  processing actual geo- 
physical data, both  Jones [ 1 1 1 ] and  Berryman [ 2 1 ] found  the 
order selected tended to be too low. 

Akaike  suggested a second-order selection criterion using a 
maximum likelihood approach to derive a criterion termed the 
Akaike infomation criterion (AIC). The AIC determines the 
model order by  minimizing  an information theoretic function. 
Assuming the process has Gaussian statistics, the AIC is 

AICp = In (Gp) + 2(P + 1)W (2.95) 
The  term ( p  + 1) in (2.95) is sometimes replaced  by p ,  since 
2 / N  is only an  additive constant which accounts  for the sub- 
traction of the sample  mean. The second term in (2.95) repre- 
sents the penalty  for  the use of extra AR coefficients that  do 
not result in a substantial reduction in the  prediction error 
power.  Again, the order p selected is the  one that minimizes 
the AIC. As N + “0, the AIC and FPE are equivalent.  Kashyap 
[ 1 15 I claims the AIC is statistically inconsistent in  that  the 
probability of error in choosing the correct order does not 
tend to zero as N --f 00. 
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A third method was proposed  by Parzen [ 1921 and is termed 
the criterion autoregressive transfer (CAT) function. The or- 
der p is selected to be the  one in which the estimate of the dif- 
ference of the  meamquare errors between  the  true  prediction 
error filter (which may be of infinite length) and the estimated 
filter is a minimum. Panen showed that this difference can be 
calculated, without explicitly knowing the  true  prediction er- 
ror filter, by 

CATp = 4) - - (2.96) 
1 

i =  1 Ci %p 

where & = (N/(N - j )&.  Again p is chosen to minimize  CATp. 
The results of spectra using the FPE,  AIC,  and  CAT  have 

been mixed, particularly against actual data rather than simu- 
lated AR  processes.  Ulrych and  Clayton  [25 11  have found 
that  for  short data segments, none of the criteria work  well. 
For  harmonic processes in noise, the FPE  and AIC also tend to 
underestimate  the  order if the SNR is high [92],  [138]. 
Ulrych  and Ooe [92] suggest in  the case  of short  data seg- 
ments that an  order selection between N/3  to  N/2 often p r e  
duces satisfactory results. In the Gnal analysis,  more  sub- 
jective judgment is s t i l l  required in the selection of order  for 
data  from actual processes than  that  required  for  controlled 
simulated  computer processes. 

Anomalies of and  Patches for the AR Spectral  Estimator: 
Several  anomalies  of the AR spectral estimator have  been 
observed by researchers. When the model  order is chosen to 
be too large  relative to  the number of data points, the AR 
spectral estimate exhibits spurious peaks [2121, [2501.  Ideally, 
if the autocorrelation lags, or equivalently, the reflection coef- 
ficents, were estimated  without error, then  the  estimated AR 
parameters  for an AR(p)  model would  be 

$i = I api ,  for i =  1 , 2 , * * . , p  

0, for i = p + l , . - * , n  
(2.97) 

where % are the  AR(p) parameters.  However,  when  estima- 
tion errors are present, then % f 0 in general for i > p.  Corre- 
spondingly, there will be n-p “extra” poles. When the  estimated 
extra poles occur near the  unit circle, spurious spectral peaks 
result. It is this possibility  of spwious peaks that is the basis 
of the recommendation that the maximum model  order  should 
be no greater than N/2, where N is the  data  record  length 
[251]. 

It has been  observed for a process  consisting  of a sinusoid in 
noise that  the peak location  in  the AR spectral estimate d e  
pends  critically onthephase of the sinusoid [451, [2291. Also, 
it has been  observed that  the spectral estimate  sometimes ex- 
hibits two closely  spaced  peaks,  falsely indicating a  second 
sinusoid. The latter  phenomenon is known as spectral line 
splitting (SLS) (641. 

The phase dependence of the AR spectral estimate decreases 
as the data  record  length increases. The  amount of  phase  de- 
pendence  varies for  the dfiferent AR estimation procedures. 
For  the Burg algorithm, the shift in peak location can be as 
much as 16 percent [230]. The forward-backward prediction 
error approach is least dependent on phase [ 1541, [25 1 I. Two 
techniques have been  proposed to reduce this effect. In the 
first approach, the phase dependence is attributed to  the inter- 
action  between the positive and negative frequency compe 
nents of the real sinusoid, much in the same way as the peak 
of the periodogram depends  upon phase [ 1191, 1231 1,12341, 

Based on this premise, the solution is then to replace the real 
valued  signal  by the analytic signal. The analytic signal pro- 
cess is then down  sampled  by two and the AR spectral esti- 
mate  for  complex  data used. The model order  for  complex 
data need only be half as large as for real data since the com- 
plex conjugate pole  pairs in the real  case are not  required  in 
the  complex  approach. Using this approach, the phase depen- 
dence  of the Burg spectral estimate can  be  decreased [ 1 191. 

The  other alternative procedure  (for  the Burg spectral esti- 
mate) is to employ the estimator 

n = i  I n = i  

which  weights the reflection coefficient terms  with the real se 
quence (v,). This windowing  of the residual time series,  sug- 
gested  by  Swingler [ 2281, has the effect of reducing the end 
effects of the  short  data record. Simulations indicate the 
phase dependence is also reduced by this method. 

The problem of spectral line splitting in AR spectra produced 
by the Burg algorithm was hrst  documented by Fougere et al. 
[64]. They  noted  that spectral line splitting was most  likely 
to occur when 1) the SNR is high, 2)  the initial phase  of  sinu- 
soidal components is some  odd  multiple of 45O, 3) the  time 
duration of the  data  sequence is such that sinusoidal compe 
nents have an odd  number of quarter cycles, and 4)  the num- 
ber of  AR parameters  estimated is a large  percentage  of the 
number of data values  used for  the estimation. Many spurious 
spectral peaks often  accompany spectra that exhibit line split- 
ting. Again the phenomenon is associated with  short  data 
records  since it tends to disappear as the data  record increases. 
SLS has been observed in the Burg and  YuleWalker spectral 
estimates for  multiple sinusoids in white noise [ 1201. A solu- 
tion to  the problem has been proposed by Fougere [ 65 I. He 
attributes  the splitting to  the fact that  the prediction error 
power is not truly minimized  using Burg’s estimate  for the re- 
flection coefficients. His technique minimizes the prediction 
error power  by  varying all  reflection coefficients simultaneously. 
From his simulation, the technique appears to eliminate SLS 
for at least one sinusoid. Another  method of  eliminating SLS 
for  one sinusoid is to  use the analytic signal approach [941, 
[ 1201. The analytic signal approach yields the  true reflection 
coefficients for  the Burg spectral estimate when noise is neg- 
ligible, the condition where SLS is most likely to  be  observed. 
For  the Yule-Walker spectral estimate, if the analytic signal 
approach  and the unbiased autocorrelation  estimate are used, 
the  true autocorrelation  function is obtained. Thus, in either 
%e, SLS is eliminated. For multiple  sinusoids, the per- 
formance of Fougere’s algorithm is undocumented and the 
use of complex data in conjunction with Burg’s reflection 
coefficient estimate can still exhibit SLS [941. Using the 
forward-backward LS approach in conjunction  with  the recur- 
sive algorithm of Marple, SLS has not been  observed [ 1541. 

Besides  phase, signals with large dc levels (x a linear trend 
have also been found to corrupt AR spectra [ 1 13 I, particularly 
the low-frequency end of the spectral estimate. These c o m p  
nents should be  removed before applying AR spectral analysis 
techniques. 

A very important  problem  with the AR spectral estimator, 
which limits its utility, is its sensitivity to  the addition of o b  
servation noise to the  time series [ 1861 . An example is given in 
Fig. 8. It is seen that  the spectral peaks are broadened and dis- 
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Fig. 8. Spectral estimates for two sinusoids in white Gaussian noise. 

(a) High SNR. (b) Low SNR. 

placed from their true positions (indicated by arrows). In par- 
ticular, it has been shown  that  the resolution of the AR spectral 
estimate for two  equiamplitude sinusoids  in  white  noise  de- 
creases as the SNR decreases [ 1491, [ 1521. For low SNR, the 
resolution is no  better  than  that of the periodogram. The rea- 
son for  the  degradation is that  the all-pole model assumed in 
AR spectral analysis is no longer valid  when observation noise 
is present. To see this, assume y ,  denotes  the noise corrupted 
AR process, +. Thus 

Yn = 5r + wn (2.99) 
where w, is the observation noise. If w, is white noise with 
variance u$ and is uncorrelated  with x,, 

Thus  the PSD of y ,  is characterized by  poles and zeros, i.e., 
y ,  is an-ARMA ( p ,   p )  process. The  inconsistency of the AR 
model  for a noise corrupted AR process leads to  the degrada- 
tion observed in Fig. 8 [ 12 1 1. The  phenomenon is explained 
as follows. The effect of noise is to reduce the dynamiz range 
of the PSD  of x,.  Since the  prediction error fiiter A ( z )  at- 
tempts to whiten tge PSD, it is not surprising that for low 
SNR, the z%ros of A(z) are located near the origin of the z 
plane, i.e.,-A(z) e 1. This is because the PSD  of y ,  is already 
relatively flat due to noise so that  subsequent filtering opera- 
tions, i.e., the use of a prediction error fiiter, will not siM1- 

cantly whiten the PSD further. 
To reduce  the  degradation of the AR spectral estimate  in the 

Fig. 9. ARMA model for AR process in white noise. 

presence of noise, four general approaches have been proposed. 
One can 

1) use the ARMA spectral estimate; 
2) fiiter the data to reduce  the noise; 
3) use a large order AR model; 
4) compensate either the  autocorrelation  function  estimates 

or the reflection coefficient estimates for the noise effects. 

The ARMA approach assumes that  the noise corrupted AR 
process is a general ARMA ( p ,  p )  process  even though  the AR 
and MA parameters are related by (2.100). The most  common 
approach has  been the use  of the modified  Yule-Walker equa- 
tions as described in Section 11-F. [ 58 l ,  [72 l .  For an ARMA 
( p ,  p )  process, this means  solving the set of equations 

for k = p + 1, p + 2, * , 2 p  in  order to  obtain  the AR param- 
eters. Although simple to  implement, this approach has met 
with  only  moderate success.  Reasonable results are obtained 
for  long  data  records and/or high SNR's. A more suitable solu- 
tion to  the noise problem is to use the maximum likelihood 
ARMA estimate. However, this procedure leads to  a set of 
highly nonlinear  equations [3 1 1. In the case for which the 
maximum likelihood equations are determined specifically for 
an AR process in white noise, a  suboptimal solution to  these 
equations leads to an iterative filtering scheme as described in 
[ 1431. Other ARMA fdtering schemes can be  found  in refer- 
ences [118],  [151],  [159], 11721. All the  methodsrelyona 
boot-strapping  approach to design the filter since the power 
spectral density of +, which is what we are attempting to es- 
timate, is unknown. 

Another  technique to combat noise is to employ  an AR 
model with  a  model  order larger than  the  true AR model. This 
is because an ARMA(p, p )  process is equivalent to an AR(m) 
model, as guaranteed by the Wold decomposition. Using 
(2.100), let 

uz + UZ,A(Z)A*(l /Z*)  = u;B(z)B*(l/z*) 

where 

so that y, can be represented as the  output of a pole-zero filter, 
H(z), driven by  white noise (with variance 4) as shown  in 
Fig. 9. If  we divide A(z)  by B(z), we have 

H(z )  = I/(A(z)/B(z)) = l/C(Z) 
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Thus, yn can be  modeled by  an AR(-) process with parameters 
{ck}. Clearly, as the assumed AR model order increases, the 
estimated AR  PSD will approach  the  true PSD of yn. This 
property is also evident from  the maximum entropy formula- 
tion since it is shown there  that 

f i , . , , ~  = R,, (k), for I k I G P 
where f iyy(k)  is the  autocorrelation  function corresponding to  
the  AR(p) model  and Ryy(k) is the  true  autocorrelation  func- 
tion of y,,. Thus, as p + 00, the  autocorrelation  function of the 
model matches the  true  autocorrelation  function. Hence, the 
spectra must also match each other. 

It would  seem that  a model order as large as possible should 
be used.  However, due to the spurious peak problem, one 
should limit the maximum model order to  no more than one 
half the  number of data points, as discussed  previously. 

In  practice  a larger order model will be needed when the 
zeros of B(z)  are near  the  unit circle  of the z plane. In this 
case, the ck sequence will die out slowly.  Since the zeros B(z)  
move outward as the SNR  decreases [ 121 1, increasing the 
model order wiU be  necessary as the SNR  decreases. To quan- 
tify the  effect of model order on the AR spectral  estimate  for 
an AR process in white noise, consider two  equiamplitude sinu- 
soids in white noise. It has been shown [ 1491 for this case 
that  the  resolution Sf in  hertz of the AR spectral  estimate, as- 
suming a known autocorrelation  function, is approximately 

[ p ( p  + 1)1°-31 Sf - 
6.471 X 27rpAt 

(2.102) 

where p is the SNR. As expected,  the  resolution increases 
with increasing model order. An example of this behavior is 
shown in Fig. 10. Note that  the  extra poles are approximately 
uniformly spaced within the unit circle, producing an equiripple 
approximation to  the flat noise spec-. 

Many noise cancellation schemes that compensate the  aut& 
correlationlagsforthenoiseareavailable  [123],  [151],[159], 
[2141,  [2401, [2681. Details may be found  in  these references. 
The PHD is a special case of these schemes. In general, these 
noise cancellations schemes can reduce the bias, but will in- 
crease the variance of the  spectral estimate. A serious defi- 
ciency is that, in general, one does not know how much noise 
power to remove. Thus, if is too large, the estimated AR 
spectrum will exhibit  sharper peaks than the  true spectrum. 
Thus one must be-careful in applying these techniques. 

F. Moving  Average PSD Estimation 
As presented in the  introduction to  Section 11, a MA process 

is a  stochastic process obtained from the  output  of  a filter 
whose transfer function contains  only zeros, and whose input 
is a white noise process, ie., 

Q 

m =o 
+t= b m h - m  (2.103) 

with 

E [ n n ]  0 E[n,+,n,+] = o*S,  

where &, is 1  for m = 0, and 0 otherwise. Based on (2.103), 

o.om 
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Fig. 10. Burg spectral estimate for two sinusoids in white noise. Effect 
of model order. (a) p = 4. (b) Pole plot for p = 4. (c) p = 32. (d) P d e  
plot for p = 32. 

the  autocorrelation function of  a MA process  of order q is 

l e y  
for k > q  
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Thus, if ( q  + 1) lags  of the  autocorrelation  function are known, 
the parameters of a  qth-order MA process are determined by 
solving the nonlinear set of equations (2.104), often called the 
method of moments [ 3  1 1. However, if only  a spectral estimate 
is desired, then there is no need to  solve for  the MA param- 
eters, but  only to determine  the  autocorrelation function, 
since 

S)MA(f) = 2 exp ( - i 2 n f m ~ t )  
m = - q  

which is identical to  a BT spectral estimate. The method of 
moments is then  not applicable to  the spectral estimation 
problem. If one uses a MLE of the MA parameters, this also 
corresponds to  a MLE of the  autocorrelation function, since a 
one-to-one  transformation is  given  by (2.104) (assuming the 
zeros are within  the unit circle  of the z plane). In this case, it 
is appropriate to determine  the MA parameters as an interme- 
diate step to estimating  the  spectrum. This approach has not 
been  employed since the MLE for  the MA parameters is highly 
nonlinear [3 11. Furthermore,  for MA modeling, too many 
coefficients are  necessary to represent narrow-band spectra, 
leading to poor spectral estimates for these situations. 

One must  determine the order of the MA model when only 
data samples are available.  One intuitive method suggested  by 
Chow [48] would  be to use the unbiased autocorrelation lag 
estimator (2.14) and check that  the lag estimates  approach 
zero rapidly after a small number of terms, since from  (2.104) 
we know that R,(m) = 0 for lags greater than  the  order of the 
MA process.  If not, an AR or ARMA model  may  be  more a p  
propriate. Chow  suggested a  hypothesis test on successive  lags 
to determine if lag R,(q) is sufficiently close to zero relative 
to  the variance of the lags indexed less than q. If so, then the 
order of the MA process is considered to be q .  The lag esti- 
mates  are  used in (2.104)  to find the MA parameters.  Further 
refinements of the MA parameter  estimation can be  made 
[ 2361,  once  the  order q has  been determined, by enforcing  the 
constraint on  the lag estimates  that R,,(m) = 0 for m > q .  

G. ARMA PSD Estimation [ I l l ,  [31], [35], [72],  [79],  [86], 
i871, W I ,  ill 71, [165l, [2421, [2661, P 6 7 I  

YuIe-Walker Equations: Recall that  the ARMA model as- 
sumes that  a time series x, can be modeled as the  output of a 
p pole  and q zero filter excited by white noise,  i.e., 

P 9 

k = l  k =o 
X, = - 2 akX,-k + bknn - k  (2.105) 

where R,,(k) = 0 2 6 k  and bo E 1.  The  poles  of the filter are 
assumed to be within the unit circle of the z-plane. The zeros 
of the filter may  lie anywhere in the z-plane. 

Once the parameters of the ARMA ( p ,  q )  model are identi- 
fied, the spectral estimate is obtained as 

9 A f  1 = IH(exp WnfAtI I' %(f> 

0 2 A t  1 + bk exp  (-j2lrfkAt) ' 1 I k = l  

1 + C ak exp (-j27rfkAt 
P 1 k = l  

(2.106) 

The relationship of the ARMA parameters to  the autocorre- 
lation function is easily found as follows.  Multiply (2.105) by 
x,*-[ and take the expectation to yield 

P Q 
Rxx(I) = - ak&& - k )  + 2 bkR,(I - k )  

k = 1  k =O 

(2.107) 

where 

R,(k) = E(nnX,*-k). 

But R,(k) = 0 for k> 0 since a  future  input  to  a causal, stable 
filter cannot affect the present output and n, is white noise. 
Therefore, 

for I = O , - - . , q  

for 1 = 4 + 1 , 4 + 2 ; * . .  

From  the derivation of the Yule-Walker equations, it was 
shown 

R,(k)  = oZhfk 

and therefore 

for I = O ,  l ; - . , q  

(2.108) 

f o r I = q +   1 , q + 2 , - - . .  

These normal  equations  for an ARMA process are analogous to 
the Yule-Walker equations  for an AR process. 

Estimation  of ARMA Parameters: Many ARMA parameter 
estimation  techniques have  been formulated theoretically, 
which  usually  involve many  matrix  computations  and/or itera- 
tive optimization techniques. These approaches are  normally 
not practical for real-time  processing. Suboptimum  techniques 
have therefore been  developed to make the computational 
load  more  manageable.  These techniques are usually  based on  a 
least squares error criterion and require solutions of linear 
equations. These methods generally estimate  the AR and MA 
parameters separately rather than jointly as required  for opti- 
mal parameter estimation. The AR parameters can be estimated 
independently of the MA parameters first if one uses the Y u l e  
Walker equations as given by (2.108). A fd point in favor of 
the suboptimal linear approaches is that iterative optimization 
techniques are not  guarauteed to converge or may  converge to 
the wrong solution. The nonlinearity of the  equations en- 
countered is typified by (2.108). Since the impulse  response 
is a  function of a l ,  * * , a p ,  b l ,  * - , b,, the equations given 
by (2.108) are nonlinear in the ARMA parameters. As an 
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Rn(Z) = -alR,( l -  I),  for 12 2  (2.109) 

where u(k) is the unit step function. Although numerous re- 
searchers  have proposed means of sohing these  equations, there 
appear to be  few  successful applications of these approaches. 

A more  popular  approach to t@is problem is to use (2.108) 
for I > q to find (41, az,  * * * , 5) and  then to apply  some a p  
propriate technique to find (bl, bz,  * * , bq) or an equivalent 
parameter set. For example, to find the AR parameters, using 
(2.108)andZ=q+l,q+2,-..,q+p,wesolvethefollowing 
matrix expression [72 I : 

2) ..* R,(q) 
J 

R:, 

+ 1 4  

= - I  i 1 . (2.110) 

These equations have been called the  extended, or modified, 
Yule-Walker equations. The  matrix is Toeplitz, although  not 
symmetric,  and is therefore not  guaranteed to be either 
positive-definite or nonsingular. ~n algorithm req- o(p2 ) 
operations has been developed  by Zohar 12781 for solving 
(2.1 10). 

In  order to  choose  an  appropriate  model  order p for  the AR 
portion of the ARMA model, the property [48] 

IR$I = 0 

for dimension of R L  greater than the AR order p can  be  used. 
Here IRLI denotes the determinant  of the matrix R L ,  This 
means that  one need only  monitor the determinant, IRLI, for 
i = 1,2, * - until it becomes sufficiently small. Once the AR 
parameter estimates (4)  have been found, the MA parameters 
may  be  found  by filtering the data with the all-zero filter .a"@), 
where 

k = l  

to  yield a  purely MA process.  Having performed this opera- 
tion, the techniques of Section 11-F for MA processes c%11 be 
applied. A spectral factorization is required to determine the 
MA parameters. To avoid the spectral factorization, note that 
for spectral estimation one is only concerned with f inding 
A(z)A*(l/z*) and B(z)B*(l/z*), since the spectral estimate is 
11171,11291 

If 

Bk = Z-' [u2ArB(z)B*(l/z*)l 

where Z and Z-' denote the z-transform  and inverse  z-trans- 
form, respectively, then  the spectral estimate is 

Bk exp (- j2lrFAr) 
4 

where B-k = B; To obtain Bk, observe that 

B k = 2 - ' [ A ( Z ) A * ( l / Z * ) ~ , ( Z ) ] .  

b t t h g A k  =z-'[A(z)A*(l/z*)], which is known, then 

P 
Bk= AnR,(k- n),  for k=0, 1, -.. , q .  

To determine Bk requires knowledge  of {R,(O), R,( l), - - - , 
R,(p + 4)). To insure a nonnegative spectral estimate, Bk 
must  be a positme-semidefinite  sequence. 

The  performance of  the modifled  Yule-Walker approach as 
applied to ARMA modeling  varies greatly. For some  processes, 
the  estimates of the ARMA parameters  obtained will be quite 
accurate. However, for some  processes, this will not be the 
case. As an example,  consider the asymptotic variance (as 
N+ 00) of the AR parameter  estimate  for a real ARMA (1 , l )  
process. The  estimate as given by (2.1 10) 

n = - p  

$1 =-fin(2)/fi,(1) 

can be shown to have a variance  1721 

Var(a^,) = - u2 (1 +b:)R,(O)+2b R 
N ' =(l)  . (2.11 1) 

R%t 1) 

But 

so (2.1 1 1) may  be rewritten as 

For a reasonably accurate  estimate of al, one might require the 
rms error to be no greater than 0.1, 

t/Var(i?') G 0.1. 

To meet this requirement  for bl = 0.5, the minimum number 
of  samples V~ISUS a1 is shown in Fig. 11. It may be seen that 
the statistical fluctuation will vary greatly for  a given N, d e  
pending on the spectral shape. As N + a, the ARMA( 1 , l )  
model is seen to be inappropriate as al + 0.5, since the pole 
and zero cancel  resulting in a  white noise  process. This ex- 
ample illustrates that care must be taken when  using the modi- 
fied  Yule-Walker approach, especially  when the  model  order p 
is unknown. This is because the modified  Yule-Walker matrix 
R L  formed  from  exactly known lag; will be singular for  a 
dimension in excess of  the  true model order. 
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REQUIRED IN DATA RECORD 
NUMBER OF SAMPLES 
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0 0.2  0.4 0.5 0.6 0.8 1.0 a 1  

Fig. 11.  Required number of samples in data record  for  accurate esti- 

Yule-Walker equations. 
mation of AR parameters for ARMA ( 1 , l )  proctsl using modified 

A second  technique  for  estimating the ARMA parameters 
utilizes the identify 

B ( z )  1 
A ( z )  C(Z) 
-=- 

C(Z) = 1 t Ckz-k 
OD 

k = 1  

to equate an ARMA model to an infinite order AR model. 
The { c k }  may  be estimated using AR techniques onlyrand then 
related to the ARMA parameters. Specifically, let C(z) = 1 + 
Zf= Chk~-k be the estimated AR parametem,  where M 2 
p + q. Assuming p > q ,  then (791 

B ( Z )  1 
or 

2 h A  b k G - k = G ,  for n = 1 , 2 ; * - .  
k =O 

where b̂ , = 1. Since a, should be equal zero for n > p, set 

2 h A  b&-k=O,  for n = p + l , p + 2 , * . . , p + q .  
k=O 

This expression  may be written  in  matrix  form, I+; 
r;, +q - 1  

A 

cp -1 

5 

r;, +q - 2  

(2.112) 

Once G1, &, - , gq} are found,  then {&, &, * - , $} may 
be found  by solving 

where 

$ = 1 .  

In matrix  form, this is 

1 

. (2.114) 

!q 

Since C ( z )  = A  (z ) /B(z) ,  a very largeader AR model must be 
used  when the zeros of B ( z )  are near the unit circle. In this 
case, the ck sequence will not die out rapidly. This will usually 
be the case of interest, for if the zeros of B(z) are near the ori- 
gin, they will have  negligible effect upon the PSD. In this case, 
an AR model would suffice. Nevertheless, some promising re- 
sults have been obtained  with this method [ 791, [ 197 ]. 

A third technique based upon least squares input-output 
identification has also been proposed [ 13 11, [ 155 I. From 
(2.107) it may be Seen that  the nonlinear  chamcter of the nor- 
mal equations is due to  the unknown cross correlation between 
the  input  and  output. If n, is unobservable, then R,&) can- 
not be estimated. If, however, nn were known, so that R,(k) 
could  be estimated, then  the ARMA parameters could be found 
as the solutions of a set of linear equations. In practice, n, 
is estimated  from x ,  in a boot-strap  approach to be  discussed 
later. To set up the linear equations, rewrite x ,  from (2.105) 
as 

for n = O , * * - , N -  1. (2.115) 
From (2.1 1 S), one can observe that 

(2.1  16) 
where 
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Note that H has  dimensions NX ( p  + 4). Equation  (2.115) is 
the  standard  form for a linear least squares problem, for which 
the solution is 

Q = ( H ~ H ) - ~  aHz. (2.117) 

This approach is similar to  the least  squares approach  for 
AR parameter  estimation of pure AR  processes. The cor- 
relation matrix HHH of the ARMA process  invblves the 
estimate of the cross-correlation function R,,(k). The 
initial conditions {x-p, + 1, * * , x-1, n-, n- + 1, * * * nml } 
need to be  specified, or assumed equal to zero (in a similar 
fashion to least  squares estimation of  AR parameters). To esti- 
mate n, [ 1551, one models x, by a large AR model and sets 
n, equal to  the prediction error time series. The ARMA  pa- 
rameter estimates are then  further improved  by an iterative 
procedure.  The  technique works  well only if the zeros of B(z) 
are  well within  the unit circle. It should be  observed that 
(2.1 17) is the least squares  solution  corresponding to (2.107), 
in which the exactly  known statistical correlations have  been 
replaced  by their estimates. The least  squares approach does 
not utilize the additional information that R,(k) = 0 for k > 
0. 

ARMA parameter  estimation  continues to be an active area 
of research as no  one  method seems to stand out over another 
method  in  terms of its performance  and/or  lower  computa- 
tional complexity. 

H. Pisarenko  Harmonic Decomposition 
If a stochastic process consists solely of sinusoids in additive 

white noise, then  it is possible to model it as a special  case 
ARMA process.  Unlike the model  for the periodogram, this 
model assumes the sinusoids are, in general, nonharmonidy 
related. The  mathematical properties of this special ARMA 
process  leads to an  eigenanalysis for the  estimation of its pa- 
rameters.  Hence, a separate treatment  from  the general ARMA 
model  discussion is given to  this process. 

Sinusoids in additive noise is a frequently used test process 
for evaluating spectrum ealysis techniques. To motivate the 
selection of an ARMA process as the  appropriate  model  for 
sinusoids in  white noise, consider the following trigonometric 
identity: 

sin(52r1)=2cosSZsin((Sl[n-  11)- sin(52[n- 21) 

(2.118) 

for -n< 52 < n. By letting 52 = 2nfAt, where -1/2At < f < 
1/2At, sin a n  represents a  sinusoid sampled at increments of 
At s By setting x, = sin ( a n ) ,  (2.1 18) may be  rewritten as a 
second-order difference equation 

x,=(2cOs52)5,-1 - % l - 2  (2.1 19) 

permitting the current sinusoid  value to  be recursively  com- 
puted  from  the  two previous  values x, - and x, - z. If the z 
transform of  (2.1 19) is taken, then 

X ( Z ) [  1 - 2 COS 52z-I + ~ ~ ' 1  = D ( z )  (2.120) 

where D(z )  is a  polynomial of  second  degree that reflects 
the initial conditions. It has the characteristic polynomial 
1 - 2 cos 52z-l + z-', or equivalently zz - 2 COS 522 + 1, with 
roots z1 = exp (j2nfAt) and z2 = z: = exp  (-j2nfAt).  The 
roots are  of unit modulus, lzll = lzzl = 1, and the sinusoidal 
frequency in hertz is determined  from  the roots as follows: 

= [tan-' (Im {q}/Re {zi))1/2nAt,  for i = 1, 2. 

(2.121) 

Note  that fi = -fi. Observe that (2.1 19) is the limiting case  of 
an AR(2) process in which the driving  noise  variance tends to 
zero  and the poles tend to the  unit circle. Also, with  only two 
coefficients and  knowledge  of two samples, (2.1 19) makes it 
possible to perfectly predict the sinusoidal  process for all  time. 

In general, a 2pthsrder difference equation of real  coeffi- 
cients of the  form 

2P 
x, = - amx, -m (2.122) 

can represent a deterministic process  consisting  of p real  sinu- 
soids  of the  form sin (2nfiAt). In this case, the {% } are  coef- 
ficients of the polynomial 

z Z p + a l z Z p - l + . . . + a p - l z P + l  + a p z P + a p + l z P - l  +.* .  

m = I  

P 
+ a Z p - 1 z + a 2 p = C  (z- zi)(z- q * ) = O  (2.123) 

with  unit  modulus  roots that occur  in  complex  conjugate pairs 
of the form q = exp  (j2nf;:At), where the are arbitrary fre- 
quencies such that - 1/2At Gfi < 1/2At, and i = 1, * e e , p .  
For this purely  harmonic process, it can be shown that q = 
azp-i'fori=O,--*,p. 

For sinusoids in additive white noise w,, the observed  pro- 
cess is 

i = 1  

2P 

m = I  
yn =X, + W, = -  G h - m  + W, (2.124) 

where E[w,w, +k] = u&, E[w,] = 0, and E [ x , w ~ ]  = 0 sin- 
the noise is assumed to  be  uncorrelated  with the sinusoids. 
Substituting x, -m = y ,  -m - w, -m into (2.1241, it is possible 
to rewrite (2.124) as 

ZP ZP 

m =o m =O 
h y n - m  = GWWn-m (2.125) 

where = 1 by definition. Expression  (2.1251, first devel- 
oped by  Ulrych  and Clayton [ 25 1 1, represents the sinusoids 
in whitenoise process in  terms of the noise w, and the noisy 
observations y, ; it has the  structure of an ARMA(p, p ) .  How- 
ever, this ARMA has a special symmetry  in which the AR  pa- 
rameters are identical to the parameters of the MA portion of 
the model. 



KAY AND MARPLE: SPECTRUM ANALYSIS 1403 

If the autocorrelation  function of yn is known, the ARMA 
parameters can be found as the solution to an  eigenequation, 
as is now shown. An equivalent  matrix expression for (2.125) 
is [67] 

YTA = WTA (2.126) 

where 

yT= [ y n  Yn-1 ~ n - z p I  

A = =  [ I  ul . . -  u2p-la2p1 

wT = [wn wn - 1  - w, +PI .  

fiemultiplying  both sides of (2.148) by the Vector y and taking 
the  expectation yields 

E [  YYTI A = E[YWTI A .  (2.1 27) 

XT = [ x ,  * * 'Xn -2p I  

Defining 

then 

[ ... 

Ryy(O) * * Ryy(-2P) 

Ryy(2P) * - Ryy(0) 
E [  YYTl = R,, = ] (2.128) 

E [  YWTI = E[(X + W) WTI = E [  WWTI 

= a&r. (2.129) 

R ,  is the Toeplitz  autocorrelation  matrix  for the observed 
process and I is the  identity  matrix. The fact  that E [ X W T ]  = 
0 follows from  the  assumption that  the sinusoids are uncorre- 
lated with the noise.  Expression (2.127) is then  rewritten as 

R,A = o&A (2.130) 

which is an eigenequation where the noise variance (02,) is 
an  eigenvalue  of the autocorrelation  matrix R,. The ARMA 
parameter  vector A is the eigenvector  associated with  the 
eigenvalue u&, scaled so that  the first element is unity.  Equa- 
tion .(2.130) will  yield the ARMA parameters when the lags 
are known. Knowledge  of the noise  variance u& is not re- 
quired. It may  be shown [ 149,  app. Cl for  a process consist- 
ing  of p real  sinusoids in additive white noise that oL corre- 
sponds to  the minimum eigenvalue of R ,  when the dimension 
of R ,  is (2p + 1) X (2p + 1) or greater (the minimum  eigen- 
value is repeated if the  dimension is greater than 2p + 1). 

Equation  (2.130)  forms the basis  of a  harmonic decomposi- 
tion procedure developed by  Pisarenko [ 1951. This procedure 
gives the exact  frequencies  and powers  of p real sinusoids in 
white noise assuming exact knowledge  of 2p + 1 autocorrela- 
tion lags, including  the  zero lag. Since only the autocorrela- 
tion  lag!^ are assumed known, phase information  about  each 
sinusoid is lost. Pisarenko  noted  the applicability of a trigono- 
metric  theorem of Caratheodory [82]  for developing amethod 
to find not  only  the  frequencies = 2nfiAt,  but also the 
powers Pi = Ail2 and the noise  PSD o&At, from  only knowl- 
edge  of  2p + 1 values  of the  autocorrelation function. For 
sinusoids in white noise, the autocorrelation  function is 

R,,,,(k) = 2 Pi cos (ZnfikAt), for k # 0. (2.131) 
P 

i= l  

Noting that  white noise only affects the  zero lag term, pisa- 
renko was led to the  eigenequation  (2.130) by the  approach of 
Caratheodoy's  theorem, rather than by the  approach pre- 
sented here. 

Once the ARMA coefficients 4' are found,  the  roots z,, of the 
polynomial 

z 2 p + a 1 z 2 p - 1   + ~ ~ ~ + a 2 p - 1 z + u z p = 0  (2.132) 

formed from  the coefficients wiu yield the sinusoid frequen- 
cies, since the  roots are of unit modulus with 

Zn = exp (j2nfnAr). (2.133) 

See the discussion leading to (2.123). Due to  the structure 
of (2.1281, it turns out  that  (2.132) must be symmetrical, 
that is, ui = azp - i. 
No recursive technique is known  for solving the eigenequa- 

tion (2.130)  for  order p based on knowledge  of the solution 
for order ( p  - 1). If the number of sinusoids is unknown,  but 
the  autocorrelation lags are exactly  known,  then  independent 
solutions of (2.130)  for successively  higher orders must be 
computed until a  point is reached  where the minimum  eigen- 
value  does not change from  one  order to the  next higher order. 
This is an indication that  the correct order has been  reached. 
At this point, the minimum  eigenvalue is the noise variance. In 
practice, only  autocorrelation estimates are available, so that 
one  must choose  the  number of  sinusoids p as that  order in 
which the minimum  eigenvalue  of (2.130) changes little  from 
the minimum  eigenvalue at order p - 1. The  computational re- 
quirements  for solution of (2.130) can be reduced  somewhat 
by  utilizing the Toeplitz structure of the  matrix R,. The 
minimum  eigenvalue  and  associated  eigenvectors  may  be found 
by the classical power method  in which the sequence of vectors 

A ( k  + 1) = R;,?A(k), for k = 0,  1, * * * (2.134) 

converges in the limit to the eigenvector  of the minimumeigen- 
value, for some initial guess A(0) .  Equation  (2.134) can  be 
rewritten as 

R,A(k + 1) = A ( k )  (2.135) 

which can be  solved for the unknown  vector A ( k  + l) ,  given 
A ( k ) .  Gaussian elimination  type  techniques require 0 ( p 3 )  
operations. However, algorithms are available [ 631, [ 2771 that 
use the T-plitz Structure of R ,  to solve (2.135) in o ( p 2 )  
operations. A good starting vector is the all unity  vector 
AT(0)  = [ 1, - - - , 11, and the eigenvector A(=-) is usually ob- 
tained after only a few iterations. Once A is found,  the 
minimum  eigenvalue Ami, (and therefore the noise  variance 
estimate) is given by 

(2.136) 

Note that A ( k )  is rescaled for use in (2.134) each time by the 
Rayleigh quotient of (2.1 36) until convergence to Ami, is 
achieved. 

Once the frequencies have  been determined  from the poly- 
nomial rooting of A ,  the sinusoid  powers  can  be determined. 
The  autocorrelation lags Ryy( 1) to Ryy(p )  may  be  expressed 
in matrix form, based on (2.131), as 

FP=r (2.137) 
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Fig. 12. Summary of Pisarenko spectral line  decomposition  procedure. 

where 

cos (2nf1At) - - COS (2nfpAt) 

cos (2nf1pAf) - COS (2nfppAt) 
F = [  

P =  ["I and 

PP 

r =  

The matrix F is composed of terms that depend upon  the sinu- 
soid frequencies as determined from polynomial rooting. The 
sinusoid  powers  are found by  solving the simultaneous equa- 
tion set (2.137)  for  the power vector P. The noise power can 
also be determined from 

P 
= ~ y y ( 0 1 -  Pi. 

1 = 1  

Fig. 12 is a summary of the PHD technique. 
Since the order is usually unknown, determining order by 

checking the minimum eigenvalue  involves  several solutions 
of eigenequation (2.130). This is not only computationally 
expensive, but it is also not  often clear  when the minimum 
eigenvalue  has  been reached since estimated lags, rather  than 
known lags, are normally used. If the selected order is too 
high, p sinusoids for eigenequation order 2p will be computed, 
even though fewer than p sinusoids really exist. Thus spurious 
components will  be introduced. If the order is too low, then 
the spectra! components that are found tend to appear at in- 
correct frequencies. The use  of the biased autocorrelation lag 
estimates guarantees a  positivedefinite Toeplitz autocorrela- 
tion matrix. However, the implied triangular windowing of 
the biased autocorrelation estimate, as discussed  in Section 
11-B, yields significantly inaccurate frequency and power esti- 
mates for actual signals present. It will also introduce spurious 
components into the spectral decomposition. Unbiased  lag 
estimates like (2.14) could be used, but  the autocorrelation 
matrix is not guaranteed to be positive definite, as required 
in order to perform the Pisarenko decomposition. This can 
lead to negative  eigenvalues and meaningless frequency esti- 
mates. Non-Toeplitz positive-definite autocorrelation matrix 
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forms such as XpXl from Section 11-E have been tried in place 
of R, in (2.130),  but  they produce nonunit modulus roots 
and do  not seem to improve the results. For colored noise 
that  contributes to a finite number of  lags beyond lag zero, 
a modification of the Pisarenko technique -can be  used [ 2141. 

The eigenanalysis approach of the Pisarenko technique can 
be  generalized to the idea of extracting the most information 
concerning a signal  by  processing for  the largest  eigenvalues 
and corresponding eigenvectors of  an estimated correlation 
matrix 11351, [1851,[2521. 

J. Prony's Energy Spectral Density (361, (491, (1011,  (1021, 
[1561,[160/,  (1991,  [2001.  (2171,  (2531,  (2611 

Prony's method, a technique for modeling data of equally 
spaced samples by a linear combination of exponentials, is 
not  a spectral estimation technique in  the usual  sense, but  a 
spectral interpretation is provided in this section. Gaspard 
fiche, Baron de Prony [202], was led to believe that laws 
governing expansion of various gases could be represented by 
s u m s  of exponentials. He proposed a  method for providing 
interpolated  data points in his measurements by fitting an 
exponential model to the measured points and computing the 
interpolated values  by evaluation of the exponential model at 
these points. The  modem version of Prony's method bears 
little resemblance to his original approach due to evolutionary. 
changes that have been made. The original procedure exactly 
fitted an exponential curve  having p exponential terms (each 
term has two parameters-an amplitude Ai and an exponent  CY^ 
where Ai exp (air)) to 2p data measurements. This approach 
is discussed  in Hildebrand [95]. For the case  where only an 
approximate fit with p exponentials to a  data set of N samples 
is desired, such that N > 2p,  a least squares estimation pro- 
cedure is used. This procedure is called the extended Prony 
method. 

The model assumed in the  extended Prony method is a set 
of p exponentials of arbitrary amplitude, phase, frequency, 
and damping factor. The discrete-time function 

P 
h 

X n =  bmz;,  for n = O , * - . , N -  1  (2.138) 

is the model to be  used for approximating the measured data 
x. , * , XN- 1. For generality, b ,  and z, are assumed  com- 
plex and 

m=1 

b ,  = A ,  exp (idm) 
Z, = exp [(a, + i2?rfm)At] (2.139) 

where A ,  is the amplitude, 8, is the phase  in radians, a, 
is a damping factor, f, is the oscillation frequency in  hertz, 
and At represents the sample interval in seconds. Finding 
{A,,  O m ,  a,, f,} and p that minimize the squared error 

8 = IX, - 
N- 1 

(2.140) 

is a difficult nonlinear least squares problem. The  solution 
involves an iterative process in which an initial guess  of the 
unknown parameters is successively  improved.  McDonough 
and Huggins [ 1571 and Holtz [97] provide such iterative 
schemes for  the solution of (2.140). An alternative sub- 
optimum  solution  that does not -minimize (2.140)  but still 
provides satisfactory results, is based on Prony's technique. 
Prony's method solves two sequential sets of linear equations 
with an intermediate polynomial rooting step that concentrates 

n =o 
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the nonlinearity of the  problem in the  polynomial  rooting 
procedure. 

The  key to  the Prony  technique is to recognize that (2.138) 
is the  homogeneous  solution to a  constant coefficient linear 
difference equation,  the  form of which is found as follows. 
Define the polynomial \k(z)  as 

D D 

k = l  i = o  

Thus \k(z)  has the  complex  exponentids zk of (2.139) as its 
roots and  complex coefficients ai when multiplied  out. Based 
on(2.138), one way  of  expressing;,-, is 

D 

(2.142) 
1 = 1  

for 0 < n - m Q N - 1.  Multiplying (2.142) by am and  sum- 
ming  over the past p + 1  products yields 

(2.143) 
m =o 1 = 1  m=O 

defined for p < n Q N - 1. If in (2.143)  the  substitution 
z " - ~  1 = is made, then 

m =o 1 = 1  m=o 

The  zero result in (2.144)  follows by  recognizing that  the final 
summation above is just  the polynomial \k(z,)  of (2.141), 
evaluated at one of its roots. Expression (2.144)  then yields 
the recursive difference equation 

D 

2, = - 2 umxn-m 
h 

(2.145) 
m-1 

defined for p Q n < N - 1.  Compare this with  (2.122) of the 
PHD procedure.  Thus  the  exponential  parameters are found 
by rooting  polynomial  (2.141) using the a, coefficients. 

To set up the extended  Prony  method, fmt define the dif- 
ference  between  the actual measured data x ,  and the approxi- 
mation X̂, to be e,, SO that 

h 

x ,  = x ,  + e ,  (2.146) 

defined  for 0 < n < N - 1. Substituting (2.149, 
D 

m=1 

P P 
= -  amXn-m + amen-m (2.147) 

defined for p < n < N - 1 ,  where x ~ - ~ = x , - ~ - ~ , - ~  has 
been used. Based on (2.147), an alternative model to  the  sum 
of exponentials  plus additive noise model is that of an ARMA 
model  with identical AR and MA parameters driven  by the 
noise  process e,. Unlike the  Pisarenko  technique,  the ai coef- 
ficients are not constrained to  produce  polynomial  roots of 
unit  modulus (no damping). Although the  true least squares 
estimate of the parameters is obtained by  minimizing 

m = l  m=o 
A 

N- 1 

this leads to  a set of nonlinear  equations that are difficult to 
solve.  An alternative procedure,  termed the extended  Prony 
approach [ 2661, defines 

P 
E ,  = amen-,, for n = p ,  ,N- 1  (2.148) 

m =o 

so that 

P 
x , = -  urnx, - ,+e , .  (2.149) 

One then minimizes 1 E ,  1' , rather than 1 e, 1'. n u s  
the extended  Prony  parameter  estimation  procedure reduces 
to  that of  an AR parameter  estimation for which the least 
square  covariance algorithm of (2.69) with XfyXl may  be  used. 
Note that  the nonwhite random input process E ,  is derived 
from  a MA process  driven  by the  approximation error e, , as 
indicated by (2.148). Also, E ,  is the difference between x ,  
and its linear prediction based on p past data samples,  whereas 
ek is the difference between x, and its exponential  approxi- 
mation.  The  number of exponentials p is determined using the 
AR order selection techniques discussed in Section 11-E. An 
alternate scheme to determine p involves  an  eigenanalysis of the 
XFXl matrix [252] and bears a close relationship to the non- 
Toeplitz Pisarenko  eigenanalysis  discussed in  Section 11-H. 

Once the zi have  been determined  from  the  polynomial  root- 
ing,  expression (2.138)  reduces to  a set of linear equations in 
the unknown b ,  parameters, expressible in matrix  form as 

m = l  

# B = i  (2.150) 

where 

1 

z2 

Z q  -1 

. . .  

* . -  I . . . q - 1  

B = [ b l  - * *  b P ] *  

Note that is a Van der Monde matrix similar to (2.24), 
except that  the zi terms have  damping  and arbitrary frequency 
assignments instead of a  harmonic relationship. A least squares 
minimization  of Z(x - 2)' yields the well-known solution 

B = [aH#l-'OHX. (2.151) 

A useful relationship that reduces h e  computational  burden 
of (2.151) is 

where 

( Z i * Z j > N  - 1 
w = (zizi)  - 1 ' 

(2.152) 

Determining the ai parameters by a least squares estimation, 
rooting the polynomial, and then solving for  the bi parameters 
(or residues) constitute the extended  Prony  method. To ob- 

n = p  tain the amplitude Ai ,  phase Or, damping factor ai, and  fre- 
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Interval 
Fig. 13.  Symmetric  envelope  exponential  model. 

quency fi from the zi and bi estimates,  simply compute 

A i =  lbil 

Bi  = tan-’ [Im  (&)/Re  (bi)] 

ai = In Izi !/At 
fi = tan-’ [Im (zi)/Re (zi)l/2nAf.  (2.153) 

Normally, the Prony  method is completed  with the compu- 
tation of the exponential  parameters given in (2.153). As such, 
Prony’s method has found most  of its application in transient 
analysis, such as finding resonant modes in electromagnetic 
pulse problems [ 196 J . However, a  “spectrum analysis”  can  be 
performed in the following  manner. Although many different 
spectra could be defied, one  “spectrum”  found to be useful 
makes the  assumption that  the model of the process has sym- 
metry as illustrated for one damped  real  sinusoid  in  Fig. 13. 
The assumed approximation  function becomes 

P 
x^(t)= A ,  exp(amIt()exp(j[2~f,,,t+8,1) (2.154) 

defied for - m < t < m. For x ( t )  real, complex  conjugate 
pairs  like exp j(2nfmt +e,) and  exp  -j(2nfm + e,) in (2.154) 
are  required. It is further assumed that all the  damping 
factors are negative, so that decaying exponentials are ob- 
tained. One motivation  for  the selection of  a symmetric 
envelope is that  for CY = 0, x^(t) will  have undamped sinusoidal 
components which are defined over - 00 < t <m. As a result, 
unwindowed  sinusoids are accurately modeled  by this approach. 

Since (2.154) is a f i t e  energy, deterministic expression, its 
ESD based on  the Fourier  transform of (2.154) is 

m = 1  

h 

SPRONY(f)  = l h I 2  (2.155) 

where 

This  then constitutes one possible Prony  “spectrum.”  Note 
that  the spectral estimate  (2.155)  maintains peaks that are 
linearly proportional to  the energy, unlike AR spectra peaks, 
which  are  nonlinearly related to power [ 136.1. The  Prony 
spectrum has the ability to produce narrow-band or wide-band 
spectral shapes, the shapes  being a  function of the size  of the 
damping factor (illustrated in Fig 14). The bell shaped curves 
have bandwidths (to the -3 dB points) of a/r Hz, so resolution 
vanes as a  function of damping. Note that  for selection of 
model  order p, the  Prony  spectrum requires 2p  parameters to 
characterize the  spectrum, which is twice that required for  the 

FREQUENCY 

Fig. 14. Narrow-band and wideband Rony spectral responses. 

AW  EL ORDER. USE 4m AR PARMETER 
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EQS.(2.141),(2.153) 
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€QS.(2.151),(2.153) 
I 
1 

COMPUTE TRANSFORM OF EXPONENTIAL %PEL 
AW TAKE ROWLUS TO OBTAIN SPECTRL~M 

EQS.(2.155),(2.156) 

Fig. 15. Prony  spectrum  estimation  procedure. 

AR spectral estimate. Also, the  Prony  method yields phase 
information not available with AR spectral estimation. Fig. 15 
summarizes the  Prony  spectrum  estimation  procedure. 

The  Prony  technique is a  data adaptive procedure in the 
sense that  it adjusts the  parameters of a damped exponential 
model of varying frequency, phase, amplitude, and  damping to 
fit the data. The  periodogram, in contrast, uses a fixed num- 
ber of undamped sinusoids of fixed frequencies. 

There are  several problems of which  one should be  aware 
when  applying  Prony’s method.  The problem of determinat- 
ing the  number of exponential  terms is similar to  the problem 
of model  order selection in AR estimation, so that the same 
considerations apply. However,  since  2p parameters are  com- 
puted, the maximum order is limited to be p <N/2, whereas 
p > N/2 is possible with AR spectral estimation  (although  not 
advisable).  Noise impacts the accuracy of the  Prony pole  esti- 
mates  greatly in some situations [2521-[2541. Noise also can 
cause the damping factors to be too large. 

K. Prony  Spectral  Line  Estimation 
For  a process  consisting of p real undamped (a = 0) sinusoids 

in noise, a special variant of  Prony’s method has  been  devel- 
oped.  The basic approach was described  by  Hildebrand [ 951. 
In this case, (2.138) may  be  expressed as 

P P 
x ,  = [b,z% + b&z&”] = A, cos(2rfmnAt + e,) h 

m = t   m = t  

(2.157) 

where b ,  = A ,  exp  (je,)/2 and z, = exp (j2rfmAr). Note 
that  the z, are roots of unit  modulus  with arbitrary frequen- 
cies and occur in complex  conjugate pairs as long as f,,, # 0 
or 1/2At. Thus  one must solve (2.141)  for the roots of the 
polynomial 

P 2P 

i = t  k=O 
“(z) = n (Z - z~) (z  - z:) = = 0 (2.158) 
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with a. = 1  and the ai being real coefficients. Since the roots 
are of unit modulus  and  occur in complex  conjugate  pairs, 
then (2.158)  must be invariant under  the  substitution z - l  for z, 

Comparing (2.158) and  (2.159),  one  may  conclude that a,-= 
u2p- i  for j = 0 to p ,  with a0 = a  = 1.  Thus the requirement 
for complex  conjugate root  pavs of unit  modulus is imple- 
mented by  constraining the polynomial coefficients to be  sym- 
metric about  the  center element. Based on order  2p,  a linear 
prediction error similar to (2.149) can  be rewritten as 

?P 

P 
E, = am(xn+m + x , - , )  (2.160) 

m = O  

which  reduces the  number of coefficients required by one-half. 
All the least squares  minimization  approaches  apply, except 
now the  data matrix X that represents (2.160) is a data matrix 
of Toeplitz plus  Hankel structure,  rather  than  just  Toeplitz as 
in the AR case. For example,  using E, ranging  from n = p to 
N, we have 

r;l = X A  (2.161) 

where 

A =  

F N - 4  

-l 1 

Hankel  Data  Matrix 
. . .  

Toeplitz Data  Matrix 

so that  the minimum  of the squared error 1 ~ ~ 1 '  deter- 
mines the real coefficients a l ,  - * * , a p / 2  analogous to 
those  solutions in AR batch estimation.  Note that  the last 
coefficient is ap/2 rather  than u p .  The factor of  half is due to 
a  symmetry in X that  counts  the last factor up twice. These 
coefficients are  used to set up  the order  2p + 1 symmetrical 
coefficient polynomial (2.158). Although the unit  modulus 
roots give  rise to a symmetrical  polynomial, the converse is not 
necessarily true.  Symmetric coefficients only  guarantee that if 
a  root zi  occurs, then so does its reciprocal 2;' ; to have J z i l =  1 
is not required. In practice [226], nonunit  modulus  roots are 
only  observed rarely, but when they  do occur the  roots are 
usually at fi = 0 or fi = 1/2At.  The algorithm is completed 
with the  determination of amplitude  and  phase as given  by 
(2.15 1 ) ,  which  can be reduced in size  by  one-half  by  combining 
related complex  pairs. The  spectrum will then consist of delta 
functions, representing the sinusoids, and  damped exponentials 
for those rare cases  of nonunit modulus root pairs. 

The  Prony  harmonic  decomposition  technique  described 
above  has  several  performance  advantages  over the PHD  pro- 
cedure. For one,  autocornlation lag  estimates  are not required 
with the Prony method. The Prony  method appears  from 
experiments to yield fewer  spurious spectral lines than  the 
Pisarenko  approach since the  order can be better determined 
by monitoring  the residual squared error of the special  Prony 
method. Also, the  frequency and  power  estimates  are  less 
biased than those obtained from the Pisarenko method [ 153 I ,  
[ 2261.  See  Fig.  16 in the summary  section for  a comparison 
of the spectral lines given  by  each  approach.  The  Prony method 
requires only the  solution of two sets of simultaneous linear 
equations  and a polynomial rooting. The  Pisarenko  approach 
requires a more computationally complex  eigenequation 
solution. 

L. Maximum Likelihood  (Capon) Spectral Estimation [42 ] ,  
/ I 3  71, (2 031 

In maximum  likelihood spectral estimation  (MLSE), origi- 
nally  developed for seismic array frequency-wave  number 
analysis [42], one  estimates the PSD  by effectively measuring 
the power out of a  set of narrow-band filters [ 1361. MLSE is 
actually a misnomer in  that  the spectral estimate is not  a  true 
maximum  likelihood  estimate of  PSD.  MLSE is sometimes 
referenced as the Capon spectral estimate [ 921.  The  name 
MLSE is retained  here only  for historic reasons. The difference 
between MLSE and  conventional  BT/periodogram spectral 
estimation is that  the shape of the narrow-band filters in MLSE 
are, in general, different for each  frequency  whereas they are 
fixed with the BT/periodogram  procedures.  The filters adapt 
to the process for which the PSD is sought. In particular, the 
filters are finite impulse  response (FIR) types with p weights 
(taps), 

A = [ C Z O U ~  * * * ~ p - 1 ]  . T (2.162) 

The coefficients are chosen so that  at  the frequency under 
consideration, fo , the frequency  response of the  filter is unity 
(i.e., an  input sinusoid at  that frequency  would  be undistorted 
at  the  filter  output) and the variance of the  output process is 
minimized. Thus  the  filter should adjust itself to reject com- 
ponents of the  spectrum  not  nearfo so that  the  output power 
is due  mainly to frequency components close to fo . To obtain 
the  filter,  one minimizes the  output variance $, given  by 

a2 = A ~ R , , A  (2.163) 

subject to the  unity frequency  response constraint (so that  the 
sinusoid of frequency fo is filtered without  distortion) 

E ~ A  = 1  (2.164) 

where R,, is the covariance  matrix  of x , ,  and E is the vector 

E = [ 1 exp  (j2nfoAt) * * exp ( j 2 d p  - 1]foAt)IT 

and H denotes  the complex  conugate transpose. The solution 
for  the  filter weights is easily  shown to  be [ 2031 

and the minimum output variance is then 

(2.165) 

(2.166) 

It is seen that  the frequency  response of the optimum filter 
is unity  at f =  fo and that  the  filter characteristics change  as a 
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function of the  underlying  autocorrelation  function. Since 
the minimum output variance is due to frequency  components 
near fo, then ukINAr can  be interpreted as a PSD estimate. 
Thus, the MLSE PSD is defined as 

.(2.167) 

To compute  the spectral estimate, one  only  needs an estimate 
of the autocorrelation  matrix. 

In practice, the MLSE exhibits more resolution than  the 
periodogram and BT spectral estimators, but less than an AR 
spectral estimator [ 1361. When the autocorrelation  function 
must  be estimated, it has been  observed  and  verified analyti- 
cally for large data  records that  the MLSE exhibits less  variance 
than  the AR spectral estimate [ 131. It should be noted that 
for a narrow-banbprocess, in which the autocorrelation  func- 
tion is known, the peak of the AR spectrum is proportional 
to  the square of the power of the process,  while for  the MLSE 
the peak is proportional to the power [ 1361, [ 1371. Also, the 
AR spectral estimate power  can  be found by determining the 
area under  the  peak, while the area under a MISE peak is pro- 
portional to  the square  root of the power. 

The MLSE and ARSE have  been related analytically as fol- 
lows [401: 

1 1 P  1 

(2.168) 

Where ?A%(f) is the AR  PSD for an mth order  model and 
Y M L ( ~ )  is the MLSE PSD, both based upon a known  autocor- 
relation matrix of order p [401, [ 203 I .  Thus the lower resolu- 
tion of the MLSE can  be  explained  by the “parallel resistor 
network averaging” effect of combining the  low-order AR 
spectra of  least resolution with  the high order AR spectra of 
highest resolution. +o of interest is the fact that  the inverse 
Fourier  transform of !?ML(~), which  yields the  estimated auto- 
correlation function, is not identical to the  autocorrelation 
function used to obtain  the PSD. The inverse Fourier trans- 
form of the AR  PSD, on  the  other hand, yields the identical 
autocorrelation  functions over the known range  of  lag  values, 
as indicated by (2.61). 

111. SUMMARY OF TECHNIQUES 

Table I1 provides a  summary of eleven  of the more  commonly 
used spectral estimation  techniques  presented in this paper. A 
brief  overview  of  key properties, equation references for com- 
puting  each spectral estimate, and a list of key references will 
aid the  reader to readily implement any of the techniques. 

Fig.  16 illustrates typical spectra of the eleven techniques 
described in Table 11. Each spectral estimate is based on  the 
same 64-point real  sample  sequence from a process  consisting 
of three sinusoids and  a  colored noise  process obtained by 
filtering a white Gaussian  process.  Table I11 is a list of the  data 
samples  used. The true PSD is shown  in  Fig. 16(a). The fre- 
quency axis ranges from 0.0 to 0.5 and represents the fraction 
of the sampling frequency.  The three sinusoids  are at frac- 
tional frequencies of 0.10, 0.20, and 0.21 and  have SNR’s of 
+lo, +SO, and +30 dB,  respectively,  where SNR is defined as 
the  ratio of the sinusoid  power to the  total power in the pass- 
band  noise  process. The noise  process  passband is centered at 
0.35. This particular signal  was  selected to demonstrate  how 
each spectral estimation  technique  performs against both 
narrow-band and wide-band  processes.  Fig.  16 is intended to 

illustrate properties of each technique, especially for short 
data records, rather than to serve as a basis for  comparing rela- 
tive performance among the techniques. 

A periodogram  based on  the  64  data samples  of  Table I11 is 
shown  in Fig. 16(b). The periodogram was generated  with an 
FFT  that had been double  padded  with 64 zeros. The  nominal 
resolution in Hz  of a 64-point  sequence is 0.015  625  times  the 
sampling frequency, so that  the sinusoids at 0.20 and 0.21 are 
closer than  the resolution width.  Indeed,  the periodogram 
shown here is unable to resolve these two sinusoidal compo- 
nents. The weaker  sinusoid  can  be  seen  among the sidelobes 
(no data windowing  was  used). The presence of the colored 
noise is also indicated by the discrete spectral lines in the 
upper part of the  frequency  band. Fig.  16(c) illustrates the 
BT spectrum, based on 16 autocorrelation lag estimates. The 
number of  lags  was around  20  percent of the  number of data 
samples, as recommended  by  Blackman  and Tukey. 

Several AR PSD estimates are pictured in  Figs. 16(d)-(f). 
Although al l  are AR spectral estimates, differing only in the 
manner that  the AR coefficients are estimated, the resulting 
AR spectra are quite different. Using the  64 samples, sixteen 
coefficients were computed for the AR and all the remaining 
techniques to be  discussed. The Yule-Walker AR approach, 
which  requires estimation of lags, does not resolve the two 
closely  spaced  sinusoids (it has the least resolution of all AR 
methods) and does  not give much  insight into  the spectrum 
on either side  of the main response. The AR PSD estimate 
based on  the Burg  algorithm shown in  Fig. 16(e) provides sharp 
responses at the three sinusoid frequencies, although  the  one 
at .1 is barely  visible on the scale  shown. It also  shows power 
is present at the high frequency end of the  spectrum,  although 
it is not a smooth,  broad  spectrum as it should be. This illus- 
trates  the  “peaky”  nature of AR spectra. A more  accurate 
response for the three sinusoids frequencies is obtained  with 
the  forward-backwards (or least  squares) technique  for AR 
spectral estimation, as shown in Fig. 16(f). Otherwise, AR 
spectra Figs. 16(e) and (f) are comparable. 

The MA PSD estimate is depicted in  Fig. lqg).  It is identi- 
cal to the BT spectrum since  only autocorrelation lag esti- 
mates  were  used. The  broad-band response of the MA spectrum 
stands in contrast to the  sharp narrow-band  response of the AR 
spectra. It is unable to resolve the  two close  sinusoids; the 
response around 0.1 is as broad as the response at  the high 
frequency end of the spectrum, making it difficult to detect 
narrow-band components in a wide-band  response.  One ARMA 
(8,8) PSD estimate is illustrated in Fig. 16(h), based on the 
modified  Yule-Walker approach  with biased  lag estimates 
computed  from  the  data samples.  It is not a very  good  spec- 
tral estimate, although an ARMA (1  6,16) spectrum not shown 
here was  able to separate the three sinusoid components. 

The Pisarenko spectral line decomposition of  Fig. 1qi)  is, 
like the  FFT  periodogram,  a discrete spectrum.  The two close 
sinusoids  are  resolved, but  the  frequencies and  powers  are 
grossly inaccurate. The  lower level  sinusoid at 0.10 has a 
spectral line near this frequency,  but there are  many other 
spectral lines,  making selection of actual signals from  spurious 
components difficult. The broad  portion of the spectrum has 
been  modeled  by  placing  several spectral lines  in the area of 
the  broad-band process spectrum Thus, the F’isarenko method 
does  not model the  broad-band processes  well, though it 
shows there is power in this frequency region. 

The  energy spectral density based on the extended  Prony 
method yields the spectrum  shown in  Fig. 16(j). The three 
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Fig. 16. Illustration of various spectra for the same 64-point sample 
sequence. 

sinusoid components have  very sharp responses at  the sinusoid 
frequencies, with a broad response at  the higher end of the 
spectrum. Table IV shows the actual parameter estimates ob- 
tained with the Prony method. The actual amplitudes for  the 
sinusoids of frequencies 0.1,0.2, and 0.2 1 were 0.1, 1 ., and 1 ., 
respectively. The most accurate estimates of the  three sinusoid 
powers and frequencies is provided by the spectral line decom- 
position variant of the Prony method, pictured in Fig.  16(k). 
This is no surprise since this technique is the least squares ap- 
proach that assumes a sinusoidal model. It is a discrete spec- 

trum so that  the broad-band process is not well modeled, 
although several lines are present to indicate spectral power 
in this region.  Table V lists the actual parameter estimates 
obtained with this procedure. 

The maximum likelihood spectrum, shown in Fig.  16(1) has 
a  smooth spectrum. It cannot resolve the two closely  spaced 
sinusoidal components. The  smooth  nature of the MLSE 
spectrum, being the equivalent of an average  of all the AR 
spectra from order  1 to 16, is typical of this method. 

If more accurate frequency estimation of noisy sinusoids 
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TABLE I11 
LIST OF DATA SAMPLE$ 

TABLE IV 
LIST OF P R O W  M ~ H O D  PARAMElER ESTIMATTS 

P a r a m e t e r   E s t i m a t e s  

TABLE V 
LIST OF P R O W  SPECTRAL. LINE METEOD PARAMETER E S T I M A m  

and also improved resolution are the  most  important aspects 
of spectral estimation, rather than spectral shape, then some 
recent research  by Tufts and Kumaresan 12441, [245],[134], 
[ 1351  has  addressed this problem.  They consider improve- 
ments in linear prediction, eigen-analysis, and  maximum likeli- 
hood  approaches to reduce  the  frequency  estimation variance 
and  increase the resolution. However, these deal strictly with 
the sinusoids in noise  process. 

Iv. OTHER APPLICATIONS OF SPECTRAL ESTIMATION 
METHODS 

A .  Introduction 
The  preceding sections have  discussed the  theory  and appli- 

cation of modem spectral estimation. Much  of the  underlying 

theory  presented, however, has been  applied to areas other 
than spectral estimation. Since these further applications are 
of sufficient interest to researchers in many  fields, this section 
summarizes  some  of these applications. The topics to be  dis- 
cussed  are not meant to be  an all inclusive listing of these 
additional applications, but only a representative sampling of 
the  more  common areas. 
B. Time Series Extrapolation and Interpolation 

The theoretical foundations of modem spectral estimation 
have  led to  other applications. An obvious one is that of ex- 
trapolation of a  time series of unknown PSD. If the time 
series is an AR(p) process, for  example,  then the optimum 
linear predictor  parameters are the AR parameters.  The  latter 
are estimated  from the data as discussed in Section 11-E. If the 
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Fig. 17. Interpolation of bad data points. 

process is not  an A R  process, but an A R  model is used,  then 
the number of linear prediction  parameters of the optimal 
predictor is, in general, infinite. Theoretically, as the number 
of predictor  parameters increases, the  extrapolation  error will 
decrease. When one is limited to a finite data set from which 
to estimate the predictor  parameters,  the  prediction error 
power will be minimized  by  choosing a predictor  with as large 
an order as possible, subject to  the constraint that  the pre- 
dictor parameters can be accurately estimated [ 5 1 I .  

Although  the  techniques described in Section 11-E can only 
yield a  one step predictor, one can use the predicted sample 
as if it were part of the original data set and continue the 
extrapolation to the  next sample [ 271, [ 291. It has  even  been 
proposed to use the enlarged set of  original  and extrapolated 
data  with a conventional periodogram or a BT spectral esti- 
mator to improve the resolution [ 681. In addition to extrap& 
lation, interpolation may be  performed by  using a forward  and 
backward predictor as shown in Fig. 17. This is valuable for 
replacing  bad data  points [ 1761 . 
C.  Rewhitening Filters 

A prewhitening filter is a natural use of the parameters ob- 
tained fro,m a spectral estimate. For  example,  in A R  spectral 
analysis A (2) of (2.91) is a whitening filter. The output of 
the filter (the  prediction error) is white noise if the observed 
process is AR(p! and the predictor coefficients estimated are 
the actual A R  parsmeters. In the  event that  the time series 
is not an A R  process, the  output  time series power spectral 
density will still be flatter than the  input and “approximately” 
white. This property is particularly valuable in the design  of 
detectors for signals in colored noise of unknown spectral 
shape. The  detection of target returns in a background  of 
clutter is an  example. The  optimal  detector is a prewhitener 
followed  by a matched flter, matched to  the signal at the 
prewhitener output [ 2561. Since the  clutter  spectrum usually 
is time varying, the whitening filter parameters  and  matched 
filter must be updated.  The success of the prewhitening 
scheme will depend  upon the time variation of the  clutter 
spectrum and the ability to estimate the parameters of the 
spectrum  before  they change [ 301 . 

A closely related concept is that of prewhitening a time 
series to reduce the bias  of conventional spectral estimators. 
It may  be shown that [ 1071 

112At 

E[%(f)l  = I 9,(v) W(f - v) dv (4.1) 
’ -1l2At 

where 

9 % ~ )  i~ a BT type spectral estimate, 
is the  true PSD, 

W ( f )  is a spectral window required to reduce the variance 
of the estimate WU) d f =  11. I/2At 

If 9’%(j) is nearly constant  with  frequency,  then 
1/2At 

E[@,Jf)l ?Jf) I Wf - v) dv = 9,Jf). (4.2) 

Thus, to reduce the bias, one  should  attempt to prewhiten the 
data [ 2131, [232]. Following the whitening, a BT estimate 
Ye(f) of the filtered time series e, ‘;T found. Since e,is the 
oytput of the prewhitening filter A(z ) ,  its PSD is pe(.f) = 
IA(exp [j2nfAtl)f 9J.f). The spectral estimate of x, is 
then given as 

-1/2At 

(4.3) 

where an all-zero prewhitener is assumed. It is interesting to 
note that this approach yields a spectral estimate that is the 
standard A R  spectral estimate, with the white noise PSD 
uiAt  replaced  by the PSD estimate of the residual time series, 
9 e ( f > .  

D. Bandwidth  Compression 
An important  problem in speech  research is that of band- 

width compression. If the redundancy of speech can be 
reduced,  then  more speech signals can be  transmitted  through 
a fixed bandwidth  channel or stored in some  mass storage. 
One common  technique is differential pulse code  modulation 
(DPCM) [ 1041 . The basis of  DPCM is to transmit  only infor- 
mation that cannot be predicted, often  termed the innovations 
of the process [ 1121. In fact, if the speech waveform  were 
perfectly predictable from  a set of previous  samples, then  the 
receiver, once it had  those samples,  could perfectly reconstruct 
the entire waveform (assumingno channel noise). Transmission 
could  be halted! In practice using DPCM, speech  samples are 
analyzed at the transmitter to determine the predictor param- 
eters. Then,  only the prediction error time series  and the 
predictor  parameters are transmitted. The speech  signal is 
reconstructed at  the receiver. The  bandwidth  reduction is 
possible  because the variance  of the prediction error time 
series is less than that of the speech  waveform  125 1 I, i.e., 

P 
0: = R,(O) n (1 - IC;) < R,(O). (4.4) 

i = l  

Thus fewer  quantizer levels are necessary to code the residual 
time series. Note that for maximum bandwidth compression, 
the predictor  parameters must  be continually  updated as the 
statistical character of speech changes, Le., voiced to un- 
voiced and vice  versa. 

The most dramatic  technique for bandwidth  reduction is 
linear predictor coding  (LPC), in which A R  modeling is used 
to represent the speech waveform [ 145 I .  Assuming speech can 
be accurately modeled as the  output of an all-pole filter driven 
by white noise for unvoiced speech, or driven  by an impulse 
train for voiced speech, the speech  waveform  may  be reduced 
to a small set of parameters.  Thus,  only the model  parameters 
and the period of the impulse train need  be transmitted or 
stored. Speech synthesis is then accomplished by  employing 
the appropriate  model  for  each  speech sound. 

E. Spectral  Smoothing 
Conventional periodogram and BT analysis  lead to spectral 

estimates that are characterized by many “hius and valleys,” 
since the  Fourier  transform of a  zero mean random process 
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is itself a  zero mean random process. Autocorrelation lag 
windowing or spectral window smoothing will substantially { 5o 

reduce the fluctuations but  not  eliminate  them. An AR - 
spectral estimator can be used to smooth these fluctuations 2 -  

since a  pth-order AR spectral estimate is constrained to have E u) 
p or less  peaks (or troughs). For p small, a  smoothed spectral ? 
estimate will  result. It is now  shown that  the AR spectral 5 
model accurately represents the peaks  of a periodogram but Z l o  

not  the valleys [ 2 6 ] ,   [ 7 6 ] ,  [ 1451. Consider the estimate of 0 

the AR parameters  found by  minimizing the error criterion 
( (2 .64)  with the use of e&, the  autocorrelation  normal Fig. 18. Periodogram PSD and smoothed  AR(28) PSD estimates of 
equations) speech data (from Makhoul [ 1441). 

0 1 2 3 4 5 6 1 1 9 1 0  

FREOUENCY I L H z I  

(4 .5 )  
Y 
4 

where it is assumed x , ,  n = 0, 1, - - , N -  1, is available  and L. 
x ,  = 0 outside this interval. Then,  by Parseval's theorem 

1 Il2At 

&= - [ IE(exp [ i2nfAtl)12 df 
X(t .0 )  .(tax) X ( t . ? A I )  x ( t , M - l I A I )  

NAt -1l2At Fig. 19. Line array geometry. 

where 

Since 

X(z) = A t  x,z-" 
00 

, I-" 

then  E becomes 

lA^(exp [ j2nfAt l  )Iz df 

sensors, then  a  vector  time series, { x ( t ,   O ) , x ( t ,   A x ) ,  - - e ,  

x ( t ,  [ M  - 1 1  A x ) } ,  is obtained, where x ( t ,   i A x )  is the contin- 
uous  waveform at the  ith sensor, 0 Q i < M - 1, and M is the 
number of sensors as shown in Fig. 19. The  field  can  be 
expressed  as [ 421 

x ( t ,   i A x )  =[j W f ,  k,) exp [ j 2 n ( f t  - k,iAx)l d f d k ,  

(4.7) 

which represents the field as the sum  of  an infinite number of 
monochromatic  plane waves with  random  amplitudes 9 ( f ,  k,). 
The  temporal  frequency is denoted by f, while the spatial fre- 
quency dong  the x direction is denoted by k,. The wave- 
number  component k, is the reciprocal of the wavelength 
of a  monochromatic plane wave along the x direction. Since 

l l2At 
k, = (f/c) sin 8, where 8 is the angle indicated in Fig. 19, then 

8 direction. From (4 .7 )  the inverse Fourier  transform is = $'At 1 - lX(exp 
1  E[l\k(f, k,)I2] is the power at frequency f arriving from  the 

-1lzAt N A t  

(4 .6)  

where Iz(exp [ j2nfAt l ) IZ/NAt  is the  periodogram  and @,(f) = 
$'At/IA(exp [ j2nfAtl)12.  Thus when 

is large, g x ( f )  should  match the periodogram to reduce &. For 
IX(exp [ j2nfAtl)12/NAt small, there is only  a small contri- 
bution to  the error, so that  matching is not necessary. The 
result is that  the AR spectral estimate  matches the peaks,  but 
not the valleys,  of the periodogram. If one wishes to represent 
the peaks of a  spectrum,  then  one need only  take  an inverse 
Fourier  transform to find the first p + 1  autocorrelation lags, 
which are then used to find the  AR(p) model. An example 
is shown in Fig. 18 for  the periodogram of a  speech signal. 

F. Beam forming 
In beamforming, one is interested in obtaining an estimate 

of the spatial structure of a  random spatial field. If one 
samples in space a  random field  using a line (linear) array of 

"(f, k,) = x ( j x ( t ,   i A x )  exp ( - j2nf t )  
M -  1 

i = O  

= x X f ( i A x )  exp ( j2nkXiAx).  
M -  1 

i = Q  

Expression (4 .8)  is a  Fourier  transform relationship between  a 
spatial "time  series" X f ( i A x ) ,  where Ax is the distance be- 
tween  the samples,  and its spectrum \k(f, k,). If the spatial 
field is assumed homogeneous, i.e., 

E [ x ( t ,   i A x )   x * ( t , j A x ) l  = f ( t ,  [ i  - j l  A x )   ( 4 . 9 )  

then the spatial "time series" is wide  sense stationary and the 
estimation of E(  I+( f ,  k,)I2) for all k, at a given temporal 
frequency f is analogous to  the one-dimensional  temporal 
power spectral estimation. Any  of the  techniques described 
in this paper are then applicable if the  time  data record is re- 
placed  by the spatial data  record {x(to, o),  x ( t o ,  A x ) ,  * * - , 
x( to ,  [M- 1 1  A x ) }  at some time t o .  Note that some extra 
averaging is afforded in the spatial case that is not available in 
the temporal case. For instance, the spatial "autocorrelation" 
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estimate could  be  chosen to be 

- x(nAt, (i + k ) A x )  k 2 0 (4.10) 

where x(nAt,  iAx) is assumed to be temporally stationary over 
the interval 0 < nAt Q (N  - 1)At. This estimate  includes an 
extra time averaging operation. 

G. Lattice Filters 
The  minimum  phase lattice filter described  in Section 11-E 

has the property  that  its coefficients are bounded by  one in 
magnitude. This is very  desirable  when one must quantize the 
coefficients for transmission or storage [257]. The lattice 
structure may  be  used to synthesize stable minimum-phase 
FIR filters, stable all-pole IIR filters, or stable pole-zero IIR 
filters that have  zeros within the unit circle of the z-plane. 

H. Other  Applications 

Other applications of the techniques described in this paper 
are 

1) equalization for digital communications [ 147) 
2) transient analysis [ 2521, [ 2541 
3) digital filter deisgn [ 1831 
4) predictive deconvolution [ 2091 
5 )  cepstral analysis [ 1391 . 

The interested reader  may consult the references for  further 
details. 

V. CONCLUSIONS 
Modem spectral estimation  techniques are based upon 

modeling  of the  data by  a small set of parameters. When the 
model is an accurate  representation of the data, spectral esti- 
mates  can  be obtained whose performance exceed that of the 
classical  periodogram or BT spectral estimators. The  improve- 
ment in performance is manifested  by  higher resolution and a 
lack  of  sidelobes. It should also be  emphasized that in addition 
to an accurate  model of the data, one must  base the spectral 
estimator  on a good estimator of the model parameters. 
Usually, this entails a maximum likelihood parameter esti- 
mator. If the model is inappropriate, as in the case  of an 
AR model for an AR process with additive observation noise, 
poor (biased) spectral estimates will result. If the model is 
accurate  but a poor statistical estimator of the parameters is 
employed, as in the case  of the ARMA spectral estimate using 
the modified  Yule-Walker equations,  poor (inflated variance) 
spectral estimates will also result. 

Computationally efficient procedures exist for maximum- 
likelihood AR spectral estimation. These techniques gen- 
erally do  not require substantially more computation  than 
conventional  Fourier spectral estimators. However,  maxi- 
mum likelihood ARMA spectral estimation involves the 
solution of nonlinear  equations so that no efficient compu- 
tational procedures now exist. Since ARMA spectral esti- 
mators are more  desirable than AR spectral estimators when 
the data characteristics are unknown,  due to their robustness, 
future research is being directed at computationally efficient 
maximum likelihood ARMA spectral estimation. 

A  multitude of modem spectral estimation  algorithms 
have  been proposed, with  only a small but representative 

subset  described in this tutorial. Unfortunately  few algo- 
rithms, if any, have  been  analyzed statistically for  finite  data 
records.  Comparisons among various competing  algorithms 
have been based on limited computer simulations, which  can 
be  misleading. Therefore,  future research  should also be 
directed at providing  more complete statistical descriptions 
of modem spectral estimators. 

In summary,  modem spectral estimation  techniques, when 
used properly, are extremely valuable for  data analysis. It has 
been the  intent  of  the  authors to present the various techniques 
in a unified  modeling  framework  and  with common nomen- 
clature. Hopefully, this approach will  aid  users in the selec- 
tion  of  the spectral estimation  method  appropriate to their 
application. 
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A 
I .  INTRODUCTION 

NALOG  TRANSMISSION and switching  facilities for 
telephony signals are nowadays to a growing extent 
being expanded  and replaced  by  digital  facilities. 

Thereby the conventional  multiple utilization of transmission 
paths by frequency-division-multiplex (FDM) is being substi- 
tuted by timedivision-multiplex (TDM) techniques. The 
chief  advantages  of  digital TDM transmission as compared  with 
analog FDM transmission  are as follows: 

1)  no generation of additive noise on the transmission 

2) within certain limits, no  occurrence of interference 

3) possibility for  concentration of  switching  and trans- 

path; 

through crosstalk; 

mission  facilities. 

The  widespread use and high investment  outlays of the 
installed facilities will require that analog  and  digital technolo- 
gies coexist well into  the foreseeable future. This will lead to 
an  increasing extent  to interfaces between  analog  and  digital 
sections of the toll communication  network.  Interconnection 
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